Skip to main content

Macrophages

  • Chapter
  • First Online:
Immunology of the Skin

Abstract

Macrophages strategically adopt a variety of functional phenotypes in response to local microenvironmental factors and perform important immune surveillance activities, including phagocytosis, antigen presentation, and immune suppression. In contrast to circulating macrophages that are homogeneous, tissue-resident macrophages are heterogeneous for the purpose of tissue-specific and microanatomical niche-specific functions. Macrophages have a variety of fundamental roles in biology, from homeostasis and tissue repair to regulation of immune systems. During the early phase of inflammation, macrophages exert proinflammatory functions such as antigen presentation, phagocytosis, and the production of inflammatory cytokines, and they produce growth factors that facilitate the resolution of inflammation in the later phase. Persistence of macrophage activation and polarization is often observed in chronic inflammatory skin diseases such as atopic dermatitis and may be involved in the disease pathogenesis. This chapter summarizes current knowledge of functional macrophage subsets in wound healing and atopic dermatitis, thereby providing more insights into macrophage function and possible interventions in this process. Finally, we briefly discuss the recently reported function and characterization of macrophage heterogeneity in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K et al (2004) The Toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 113:565–567

    Article  CAS  PubMed  Google Scholar 

  2. Akdis CA, Akdis M, Bieber T et al (2006) Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. J Allergy Clin Immunol 118:152–169

    Article  PubMed  Google Scholar 

  3. Barron L, Wynn TA (2011) Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol 300:723–728

    Article  Google Scholar 

  4. Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494

    Article  CAS  PubMed  Google Scholar 

  5. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  6. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Breuer K, Kapp A, Werfel T (2001) Bacterial infections and atopic dermatitis. Allergy 56:1034–1041

    Article  CAS  PubMed  Google Scholar 

  8. Chorro L, Geissmann F (2010) Development and homeostasis of ‘resident’ myeloid cells: the case of the Langerhans cell. Trends Immunol 31:438–445

    Article  CAS  PubMed  Google Scholar 

  9. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  10. Daley JM, Brancato SK, Thomay AA et al (2010) The phenotype of murine wound macrophages. J Leukoc Biol 87:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delavary BM, Veer WM, Egmond M et al (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762

    Article  CAS  Google Scholar 

  12. Frankenberger M, Hofer TP, Marei A et al (2012) Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur J Immunol 42:957–974

    Article  CAS  PubMed  Google Scholar 

  13. Gautier EL, Shay T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  16. Hagemann T, Lawrence T et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 205:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton JA, Achuthan A (2013) Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34:81–89

    Article  CAS  PubMed  Google Scholar 

  18. Hoeffel G, Wang Y, Greter M et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imai T, Nagira M, Takagi S et al (1999) Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 11:81–88

    Article  CAS  PubMed  Google Scholar 

  20. Jakubzick C, Gautier EL, Gibbings SL et al (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610

    Article  CAS  PubMed  Google Scholar 

  21. Jansen A, Lewis S, Cattell V, Cook HT (1992) Arginase is a major pathway of L-arginine metabolism in nephritic glomeruli. Kidney Int 42:1107–1112

    Article  CAS  PubMed  Google Scholar 

  22. Kabashima K (2013) New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci 70:3–11

    Article  PubMed  Google Scholar 

  23. Kawanishi N, Yano H et al (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118

    PubMed  Google Scholar 

  24. Kiekens RCM, Thepen T, Oostingetal AJ (2001) Heterogeneity within tissue-specific macrophage and dendritic cell populations during cutaneous inflammation in atopic dermatitis. Br J Dermatol 145(6):957–965

    Article  CAS  PubMed  Google Scholar 

  25. Leyden JJ, Marples RR, Kligman AM (1974) Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol 90:525–530

    Article  CAS  PubMed  Google Scholar 

  26. Lucas T, Waisman A, Ranjan R et al (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184:3964–3977

    Article  CAS  PubMed  Google Scholar 

  27. Mirza R, Dipietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175:2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Metchnikoff E (1892) Leçons sur la pathologie comparée de l’inflammation. Libraire de l’Académie de médecine. Masson, Paris

    Google Scholar 

  29. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura Y, Oscherwitz J, Cease KB et al (2013) Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niebuhr M, Lutat C, Sigel S et al (2009) Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy 64:1580–1587

    Article  CAS  PubMed  Google Scholar 

  33. Pesce JT, Ramalingam TR, Wilson MS et al (2009) Retnla (Relmα/Fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog 5:e1000393

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raes G, Brys L, Dahal BK et al (2005) Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 77:321–327

    Article  CAS  PubMed  Google Scholar 

  35. Raes G, Van den Bergh R, De Baetselier P et al (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174:6561–6562

    Article  CAS  PubMed  Google Scholar 

  36. Reese TA, Liang HE, Tager AM et al (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rudikoff D, Lebwohl M (1998) Atopic dermatitis. Lancet 351:1715–1721

    Article  CAS  PubMed  Google Scholar 

  39. Savage NDL, Boer T, Walburg KV et al (2008) Human anti-inflammatory macrophages induce Foxp3+GITR+CD25+ regulatory T cells, which suppress via membrane-bound TGFβ-1. J Immunol 181:2220–2226

    Article  CAS  PubMed  Google Scholar 

  40. Schäffer M, Bongartz M, Hoffmann W et al (2006) Regulation of nitric oxide synthesis in wounds by IFN-γ depends on TNF-α. J Invest Surg 19:371–379

    Article  PubMed  Google Scholar 

  41. Shimokado K, Raines EW, Madtes DK et al (1985) A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43:277–286

    Article  CAS  PubMed  Google Scholar 

  42. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sindrilaru A, Peters T, Wieschalka S et al (2011) An unrestrained pro-inflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stout RD, Jiang C et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    Article  CAS  PubMed  Google Scholar 

  45. Sugaya M, Miyagaki T, Ohmatsu H et al (2012) Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci 68:45–51

    Article  CAS  PubMed  Google Scholar 

  46. Takamiya M, Fujita S, Saigusa K et al (2008) Simultaneous detection of eight cytokines in human dermal wounds with a multiplex bead-based immunoassay for wound age estimation. Int J Legal Med 122:143–148

    Article  PubMed  Google Scholar 

  47. Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396

    Article  CAS  PubMed  Google Scholar 

  48. Valledor AF, Comalada M, Santamaría-Babi LF et al (2010) Macrophage pro-inflammatory activation and deactivation: a question of balance. Adv Immunol 108:1–20

    Article  CAS  PubMed  Google Scholar 

  49. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao W, Hong H, Kawakami Y et al (2008) Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J Clin Invest 118:924–934

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kitoh M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hanakawa, S., Kitoh, A. (2016). Macrophages. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_10

Download citation

Publish with us

Policies and ethics