Skip to main content

HSF Regulates Immune and Inflammatory Response

  • Chapter
  • First Online:
Heat Shock Factor
  • 985 Accesses

Abstract

Both heat shock response and immune response are fundamental and indispensable systems for biological defense mechanisms. A key part of the heat shock response is the upregulation of heat shock proteins (HSPs), which are virtually found in all living organisms, from bacteria to humans. The induced expression of HSPs during heat shock is generally controlled by a single transcription factor; in mammals this regulation is performed by heat shock factor 1 (HSF1). The primary function of HSPs is to serve as molecular chaperones, involved in the folding and unfolding of other proteins. Recent works indicate that HSPs play important roles in the immune response, including antigen presentation, as well as activation of macrophages, lymphocytes, and dendritic cells. In addition, HSF1 regulates the expression of inflammatory cytokines directly or indirectly. In this chapter, the coordinate regulation of heat shock response and immune and inflammatory response and the involvement of these responses in inflammatory diseases are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555. doi:10.1038/nrm2938, nrm2938 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78

    Article  CAS  PubMed  Google Scholar 

  • Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310(5756):1970–1973. doi:10.1126/science.1119420, 310/5756/1970 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Amador-Patarroyo MJ, Rodriguez-Rodriguez A, Montoya-Ortiz G (2012) How does age at onset influence the outcome of autoimmune diseases? Autoimmune Dis 2012:251730, 7 p. 10.1155/2012/251730

    Google Scholar 

  • Anderton SM, van der Zee R, Prakken B, Noordzij A, van Eden W (1995) Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J Exp Med 181(3):943–952

    Article  CAS  PubMed  Google Scholar 

  • Arseneau KO, Tamagawa H, Pizarro TT, Cominelli F (2007) Innate and adaptive immune responses related to IBD pathogenesis. Curr Gastroenterol Rep 9(6):508–512

    Article  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179(1–2):53–56

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14(3):303–313

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369(9573):1627–1640. doi:10.1016/S0140-6736(07)60750-8

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369(9573):1641–1657. doi:10.1016/S0140-6736(07)60751-X

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet 380(9853):1590–1605. doi:10.1016/S0140-6736(12)60026-9

    Article  PubMed  Google Scholar 

  • Beck G, Habicht GS (1996) Immunity and the invertebrates. Sci Am 275(5):60–63, 66

    Article  CAS  PubMed  Google Scholar 

  • Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95. doi:10.3389/fimmu.2012.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgstahl GE, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, Lepock JR, Cabelli DE, Tainer JA (1996) Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 35(14):4287–4297. doi:10.1021/bi951892w

    Article  CAS  PubMed  Google Scholar 

  • Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V (2010) Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 5(1):30–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 271(40):24874–24879

    CAS  PubMed  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581(19):3689–3694. doi:10.1016/j.febslet.2007.04.044

    Article  CAS  PubMed  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30(1 Supp):S43–S50

    Article  CAS  Google Scholar 

  • Cohen PE, Nishimura K, Zhu L, Pollard JW (1999) Macrophages: important accessory cells for reproductive function. J Leukoc Biol 66(5):765–772

    CAS  PubMed  Google Scholar 

  • Cooper ZA, Ghosh A, Gupta A, Maity T, Benjamin IJ, Vogel SN, Hasday JD, Singh IS (2010) Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters. Am J Physiol Cell Physiol 298(1):C171–C181. doi:10.1152/ajpcell.00346.2009

    Article  CAS  PubMed  Google Scholar 

  • Curfs JH, Meis JF, Hoogkamp-Korstanje JA (1997) A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev 10(4):742–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal S, Zhukovsky DS (2006) Pathophysiology and management of fever. J Support Oncol 4(1):9–16

    CAS  PubMed  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  PubMed  Google Scholar 

  • Dokladny K, Lobb R, Wharton W, Ma TY, Moseley PL (2010) LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-kappaB. Cell Stress Chaperones 15(2):153–163. doi:10.1007/s12192-009-0129-6

    Article  CAS  PubMed  Google Scholar 

  • Dotan I, Rachmilewitz D (2005) Probiotics in inflammatory bowel disease: possible mechanisms of action. Curr Opin Gastroenterol 21(4):426–430

    PubMed  Google Scholar 

  • Ensor JE, Crawford EK, Hasday JD (1995) Warming macrophages to febrile range destabilizes tumor necrosis factor-alpha mRNA without inducing heat shock. Am J Physiol 269(5 Pt 1):C1140–C1146

    CAS  PubMed  Google Scholar 

  • Ermann J, Fathman CG (2001) Autoimmune diseases: genes, bugs and failed regulation. Nat Immunol 2(9):759–761. doi:10.1038/ni0901-759

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Maines MD (1991) Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein. Proc Natl Acad Sci U S A 88(12):5364–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhoury M, Negrulj R, Mooranian A, Al-Salami H (2014) Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res 7:113–120. doi:10.2147/JIR.S65979

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440. doi:10.1146/annurev.immunol.14.1.397

    Article  CAS  PubMed  Google Scholar 

  • Ferm MT, Soderstrom K, Jindal S, Gronberg A, Ivanyi J, Young R, Kiessling R (1992) Induction of human hsp60 expression in monocytic cell lines. Int Immunol 4(3):305–311

    Article  CAS  PubMed  Google Scholar 

  • Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147(2):227–235. doi:10.1111/j.1365-2249.2006.03261.x, CEI3261 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischler MP, Reinhart WH (1997) Fever: friend or enemy? Schweiz Med Wochenschr 127(20):864–870

    CAS  PubMed  Google Scholar 

  • Franchimont N, Durant D, Rydziel S, Canalis E (1999) Platelet-derived growth factor induces interleukin-6 transcription in osteoblasts through the activator protein-1 complex and activating transcription factor-2. J Biol Chem 274(10):6783–6789

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277(20):4112–4125

    Article  CAS  PubMed  Google Scholar 

  • Fust G, Uray K, Bene L, Hudecz F, Karadi I, Prohaszka Z (2012) Comparison of epitope specificity of anti-heat shock protein 60/65 IgG type antibodies in the sera of healthy subjects, patients with coronary heart disease and inflammatory bowel disease. Cell Stress Chaperones 17(2):215–227. doi:10.1007/s12192-011-0301-7

    Article  PubMed  CAS  Google Scholar 

  • Galvez J (2014) Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm 2014:928461. doi:10.1155/2014/928461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gandhapudi SK, Murapa P, Threlkeld ZD, Ward M, Sarge KD, Snow C, Woodward JG (2013) Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress. J Immunol 191(8):4068–4079. doi:10.4049/jimmunol.1202831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatenby PA, Callard RE, Basten A (1984) T cells, T cell subsets and immunoregulation. Aust NZ J Med 14(1):89–96

    Article  CAS  Google Scholar 

  • Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441(7090):173–178. doi:10.1038/nature04768

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Labbe C, Trinh TT, Xavier RJ, Rioux JD (2007) Molecular pathogenesis of inflammatory bowel disease: genotypes, phenotypes and personalized medicine. Ann Med 39(3):177–199. doi:10.1080/07853890701197615

    Article  CAS  PubMed  Google Scholar 

  • Grignani G, Maiolo A (2000) Cytokines and hemostasis. Haematologica 85(9):967–972

    CAS  PubMed  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24(12):5249–5256. doi:10.1128/MCB.24.12.5249-5256.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haregewoin A, Soman G, Hom RC, Finberg RW (1989) Human gamma delta+ T cells respond to mycobacterial heat-shock protein. Nature 340(6231):309–312. doi:10.1038/340309a0

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858. doi:10.1126/science.1068408

    Article  CAS  PubMed  Google Scholar 

  • Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5(5):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasday JD, Fairchild KD, Shanholtz C (2000) The role of fever in the infected host. Microbes Infect 2(15):1891–1904. doi:S128645790001337X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hauet-Broere F, Wieten L, Guichelaar T, Berlo S, van der Zee R, Van Eden W (2006) Heat shock proteins induce T cell regulation of chronic inflammation. Ann Rheum Dis 65(Suppl 3):iii65–iii68. doi:10.1136/ard.2006.058495

    PubMed  PubMed Central  Google Scholar 

  • Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann E, Vogt P, Muller W (1986) Rheumatoid factors of immunoglobulin classes IgA, IgG and IgM: methods of determination and clinical value. Schweiz Med Wochenschr 116(38):1290–1297

    CAS  PubMed  Google Scholar 

  • Hirano T (1992) The biology of interleukin-6. Chem Immunol 51:153–180

    CAS  PubMed  Google Scholar 

  • Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195. doi:10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279(37):38701–38709. doi:10.1074/jbc.M405986200

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Fujimoto M, Nakamura T, Takaki E, Hayashida N, Hai T, Nakai A (2007) Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem 282(45):33210–33217. doi:10.1074/jbc.M704471200

    Article  CAS  PubMed  Google Scholar 

  • Isaacs SN, Axelrod PI, Lorber B (1990) Antipyretic orders in a university hospital. Am J Med 88(1):31–35. doi:0002-9343(90)90124-V [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K, Sweeney C, Leavy O, Fletcher J, Lavelle EC, Dunne P, Mills KH (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180(6):3797–3806

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD (2000) Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun 68(3):1265–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2(3):238–247. doi:10.1159/000296508, 000296508 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137. doi:10.1038/ni1303, ni1303 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Keller ET, Wanagat J, Ershler WB (1996) Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci 1:d340–d357

    Article  CAS  PubMed  Google Scholar 

  • Kim HP, Morse D, Choi AM (2006) Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets 10(5):759–769. doi:10.1517/14728222.10.5.759

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T (2005) PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J Biol Chem 280(23):21720–21725. doi:10.1074/jbc.M410057200

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T (1989) The biology of interleukin-6. Blood 74(1):1–10

    CAS  PubMed  Google Scholar 

  • Kluger MJ, Kozak W, Conn CA, Leon LR, Soszynski D (1996) The adaptive value of fever. Infect Dis Clin N Am 10(1):1–20

    Article  CAS  Google Scholar 

  • Lee TW, Fedorak RN (2010) Tumor necrosis factor-alpha monoclonal antibodies in the treatment of inflammatory bowel disease: clinical practice pharmacology. Gastroenterol Clin N Am 39(3):543–557. doi:10.1016/j.gtc.2010.08.018

    Article  Google Scholar 

  • Lee CT, Repasky EA (2012) Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state? Front Immunol 3:140. doi:10.3389/fimmu.2012.00140

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191. doi:10.1146/annurev.bi.55.070186.005443

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Dicksved J, Lundh T, Lindberg JE (2014) Heat shock proteins: intestinal gatekeepers that are influenced by dietary components and the gut microbiota. Pathogens 3(1):187–210. doi:10.3390/pathogens3010187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackowiak PA, Bartlett JG, Borden EC, Goldblum SE, Hasday JD, Munford RS, Nasraway SA, Stolley PD, Woodward TE (1997) Concepts of fever: recent advances and lingering dogma. Clin Infect Dis 25(1):119–138

    Article  CAS  PubMed  Google Scholar 

  • March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K et al (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315(6021):641–647

    Article  CAS  PubMed  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241. doi:10.1038/nature11551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGugan EA (2001) Hyperpyrexia in the emergency department. Emerg Med (Fremantle) 13(1):116–120

    Article  CAS  Google Scholar 

  • Melik-Parsadaniantz S, Rostene W (2008) Chemokines and neuromodulation. J Neuroimmunol 198(1–2):62–68. doi:10.1016/j.jneuroim.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  • Miller JF (1993) Self-nonself discrimination and tolerance in T and B lymphocytes. Immunol Res 12(2):115–130

    Article  CAS  PubMed  Google Scholar 

  • Miyajima A, Miyatake S, Schreurs J, De Vries J, Arai N, Yokota T, Arai K (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J 2(9):2462–2473

    CAS  PubMed  Google Scholar 

  • Mohamed-Ali V, Flower L, Sethi J, Hotamisligil G, Gray R, Humphries SE, York DA, Pinkney J (2001) Beta-Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin Endocrinol Metab 86(12):5864–5869. doi:10.1210/jcem.86.12.8104

    CAS  PubMed  Google Scholar 

  • Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99. doi:10.1101/sqb.2012.76.010637, sqb.2012.76.010637 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267(31):21987–21990

    CAS  PubMed  Google Scholar 

  • Moudgil KD, Sercarz EE (2005) Crypticity of self antigenic determinants is the cornerstone of a theory of autoimmunity. Discov Med 5(28):378–382

    PubMed  Google Scholar 

  • Multhoff G (2006) Heat shock proteins in immunity. Handb Exp Pharmacol 172:279–304

    Article  CAS  Google Scholar 

  • Nagarsekar A, Hasday JD, Singh IS (2005) CXC chemokines: a new family of heat-shock proteins? Immunol Investig 34(3):381–398

    Article  CAS  Google Scholar 

  • O’Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS (2006) Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus. J Virol 80(3):1077–1086. doi:10.1128/JVI.80.3.1077-1086.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otaka M, Odashima M, Watanabe S (2006) Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem Biophys Res Commun 348(1):1–5. doi:10.1016/j.bbrc.2006.07.028

    Article  CAS  PubMed  Google Scholar 

  • Palanki MS (2002) Inhibitors of AP-1 and NF-kappa B mediated transcriptional activation: therapeutic potential in autoimmune diseases and structural diversity. Curr Med Chem 9(2):219–227

    Article  CAS  PubMed  Google Scholar 

  • Panayi GS, Corrigall VM (2014) Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem Soc Trans 42(6):1752–1755. doi:10.1042/BST20140230

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62. doi:10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15(7):1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33(2):71–79. doi:10.1016/j.tibs.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  • Price GE, Fenton RJ, Smith H, Sweet C (1997) Are known pyrogenic cytokines responsible for fever in influenza? J Med Virol 52(3):336–340

    Article  CAS  PubMed  Google Scholar 

  • Prohaszka Z, Fust G (2004) Immunological aspects of heat-shock proteins-the optimum stress of life. Mol Immunol 41(1):29–44. doi:10.1016/j.molimm.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 62(12):5689–5693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN (2011) IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187(9):4835–4843. doi:10.4049/jimmunol.1102048

    Article  CAS  PubMed  Google Scholar 

  • Rokutan K (2000) Role of heat shock proteins in gastric mucosal protection. J Gastroenterol Hepatol 15(Suppl):D12–D19

    Article  CAS  PubMed  Google Scholar 

  • Ryan M, Levy MM (2003) Clinical review: fever in intensive care unit patients. Crit Care 7(3):221–225. doi:10.1186/cc1879

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650. doi:10.1152/physrev.00011.2005

    Article  CAS  PubMed  Google Scholar 

  • Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A 99(Suppl 4):16412–16418. doi:10.1073/pnas.182426899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanceau J, Kaisho T, Hirano T, Wietzerbin J (1995) Triggering of the human interleukin-6 gene by interferon-gamma and tumor necrosis factor-alpha in monocytic cells involves cooperation between interferon regulatory factor-1, NF kappa B, and Sp1 transcription factors. J Biol Chem 270(46):27920–27931

    Article  CAS  PubMed  Google Scholar 

  • Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009) Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9(4):447–453. doi:10.1016/j.coph.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81(1):15–27. doi:10.1189/jlb.0306167, jlb.0306167 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6(12):1191–1197. doi:10.1038/ni1276, ni1276 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Siakavellas SI, Bamias G (2012) Role of the IL-23/IL-17 axis in Crohn’s disease. Discov Med 14(77):253–262

    PubMed  Google Scholar 

  • Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK, Reiner NE (2010) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185(9):5011–5022. doi:10.4049/jimmunol.1000541

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Aballay A (2006) Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. Cell Cycle 5(21):2443–2446

    Article  CAS  PubMed  Google Scholar 

  • Singh IS, Viscardi RM, Kalvakolanu I, Calderwood S, Hasday JD (2000) Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J Biol Chem 275(13):9841–9848

    Article  CAS  PubMed  Google Scholar 

  • Singh IS, He JR, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277(7):4981–4988. doi:10.1074/jbc.M108154200

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002a) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425. doi:10.1146/annurev.immunol.20.100301.064801

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194. doi:10.1038/nri749

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK (2008) New jobs for ancient chaperones. Sci Am 299(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767. doi:10.1053/j.gastro.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styrt B, Sugarman B (1990) Antipyresis and fever. Arch Intern Med 150(8):1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, Tan K, Hayashida N, Ichikawa H, Hai T, Nakai A (2010) Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol 184(2):1041–1048. doi:10.4049/jimmunol.0902579

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mizushima T (2009) Protective role of HSF1 and HSP70 against gastrointestinal diseases. Int J Hyperthermia 25(8):668–676. doi:10.3109/02656730903213366

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Namba T, Arai Y, Fujimoto M, Adachi H, Sobue G, Takeuchi K, Nakai A, Mizushima T (2007) Genetic evidence for a protective role for heat shock factor 1 and heat shock protein 70 against colitis. J Biol Chem 282(32):23240–23252. doi:10.1074/jbc.M704081200

    Article  CAS  PubMed  Google Scholar 

  • Taylor PC, Steuer A, Gruber J, Cosgrove DO, Blomley MJ, Marsters PA, Wagner CL, McClinton C, Maini RN (2004) Comparison of ultrasonographic assessment of synovitis and joint vascularity with radiographic evaluation in a randomized, placebo-controlled study of infliximab therapy in early rheumatoid arthritis. Arthritis Rheum 50(4):1107–1116. doi:10.1002/art.20123

    Article  CAS  PubMed  Google Scholar 

  • Thaxton JE, Liu B, Zheng P, Liu Y, Li Z (2014) Deletion of CD24 impairs development of heat shock protein gp96-driven autoimmune disease through expansion of myeloid-derived suppressor cells. J Immunol 192(12):5679–5686. doi:10.4049/jimmunol.1302755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toomey D, Conroy H, Jarnicki AG, Higgins SC, Sutton C, Mills KH (2008) Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma. Vaccine 26(27–28):3540–3549. doi:10.1016/j.vaccine.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  • Trinklein ND, Chen WC, Kingston RE, Myers RM (2004) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85(6):905–910. doi:10.1189/jlb.0109005

    Article  CAS  PubMed  Google Scholar 

  • Van Damme J, De Ley M, Opdenakker G, Billiau A, De Somer P, Van Beeumen J (1985) Homogeneous interferon-inducing 22K factor is related to endogenous pyrogen and interleukin-1. Nature 314(6008):266–268

    Article  PubMed  Google Scholar 

  • van Deventer SJ (1999) Anti-TNF antibody treatment of Crohn’s disease. Ann Rheum Dis 58(Suppl 1):I114–I120

    Article  PubMed  PubMed Central  Google Scholar 

  • van Eden W, Anderton SM, van der Zee R, Prakken AB, Rijkers GT (1995) Specific immunity as a critical factor in the control of autoimmune arthritis: the example of hsp60 as an ancillary and protective autoantigen. Scand J Rheumatol Suppl 101:141–145

    Article  PubMed  Google Scholar 

  • van Herwijnen MJ, Wieten L, van der Zee R, van Kooten PJ, Wagenaar-Hilbers JP, Hoek A, den Braber I, Anderton SM, Singh M, Meiring HD, van Els CA, van Eden W, Broere F (2012) Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A 109(35):14134–14139. doi:10.1073/pnas.1206803109

    Article  PubMed  PubMed Central  Google Scholar 

  • van Montfrans C, Camoglio L, van Deventer SJ (1998) Immunotherapy of Crohn’s disease. Mediat Inflamm 7(3):149–152. doi:10.1080/09629359891063

    Article  Google Scholar 

  • Vilcek J (2003) Novel interferons. Nat Immunol 4(1):8–9. doi:10.1038/ni0103-8

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Maier SF, Goehler LE (1995) Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci 57(11):1011–1026. doi:002432059502047M [pii]

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Science signaling 3 (105):cm1. doi:10.1126/scisignal.3105cm1

    Google Scholar 

  • Wendling U, Farine JC (1998) Oral administration of HSP-containing E. coli extract OM-89 has suppressive effects in autoimmunity. Regulation of autoimmune processes by modulating peripheral immunity towards hsp’s? Biotherapy 10(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci 13(1):86–103. doi:BSP/CPPS/E-Pub/167 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–5952. doi:10.1093/emboj/18.21.5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002a) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277(14):11802–11810. doi:10.1074/jbc.M109296200

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK (2002b) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291(4):1071–1080. doi:10.1006/bbrc.2002.6562

    Article  CAS  PubMed  Google Scholar 

  • Yoo HY, Chang MS, Rho HM (1999) The activation of the rat copper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element. J Biol Chem 274(34):23887–23892

    Article  CAS  PubMed  Google Scholar 

  • Yura T (1996) Regulation and conservation of the heat-shock transcription factor sigma32. Genes Cells 1(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Zenewicz LA, Antov A, Flavell RA (2009) CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 15(5):199–207. doi:10.1016/j.molmed.2009.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Reiko Akagi, Shoshana Bar-nun, and Amy Azuma are gratefully acknowledged for their help in the preparation of this manuscript. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan and a grant from Yasuda Women’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiye Inouye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Inouye, S. (2016). HSF Regulates Immune and Inflammatory Response. In: Nakai, A. (eds) Heat Shock Factor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55852-1_9

Download citation

Publish with us

Policies and ethics