Skip to main content

Transcriptional Regulation by HSF

  • Chapter
  • First Online:
Heat Shock Factor
  • 1049 Accesses

Abstract

The induction and inhibition of gene expression occur constantly in cells. Stress-inducible genes are equipped with a mechanism that allows them to be instantaneously induced; RNA polymerase II (Pol II) stops at a position several tens of bases ahead of transcription initiation point in order to prepare for the induction of expression following stress. Of the known stress-inducible genes, the heat shock protein HSP70 gene has been actively studied using Drosophila melanogaster as a model organism. In the normal state, GAGA factor binds to the HSP70 promoter region in order to open the surrounding chromatin structure to prepare the condition to which HSF, Pol II, general transcription factors and coactivators can readily access. The GAGA factor is absent in higher animals, and mammalian HSF1 instead plays its role. Heat stress releases Pol II pausing in both Drosophila and higher animals, and HSP70 is rapidly induced, but through different molecular mechanisms in these animals. HSF1 induces not only the classical but also nonclassical HSP groups involved in various processes in the normal state and in response to heat shock. In addition to turning on transcription, HSF1 turns off transcription in conjugation with corepressors. Through these regulations, HSF1 plays roles in balancing the quality and quantity of proteins within a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  CAS  PubMed  Google Scholar 

  • Andrulis ED, Guzmán E, Döring P et al (2000) High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev 14:2635–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardehali MB, Yao J, Adelman K et al (2009) Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 28:1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Becker PB, Rabindran SK, Wu C (1991) Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc Natl Acad Sci U S A 88:4109–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneke S (2012) Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 3:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SA, Weirich CS, Newton EM et al (1998) Transcriptional activation domains stimulate initiation and elongation at different times and via different residues. EMBO J 17:3146–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu J, Jin Y, Shi Y et al (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276–278

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Ostling P, Akerfelt M et al (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen J, Yu C et al (2014) Identification of mixed lineage leukemia 1(MLL1) as a coactivator of heat shock factor 1(HSF1) in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem 289:18914–18927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Core LJ, Lis JT (2008) Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319:1791–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corey LL, Weirich CS, Benjamin IJ, Kingston RE (2003) Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17:1392–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR et al (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    Article  CAS  PubMed  Google Scholar 

  • Fritah S, Col E, Boyault C et al (2009) Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells. Mol Biol Cell 20:4976–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Izu H, Seki K et al (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Takaki E, Takii R et al (2012) RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194

    Article  CAS  PubMed  Google Scholar 

  • Gómez AV, Galleguillos D, Maass JC et al (2008) CoREST represses the heat shock response mediated by HSF1. Mol Cell 31:222–231

    Article  PubMed  Google Scholar 

  • Gonsalves SE, Moses AM, Razak Z et al (2011) Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS One 6:e15934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guertin ML, Lis JT (2010) Accurate prediction of inducible transcription factor binding intensities in vivo. PLoS Genet 6:e1001114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashida N, Fujimoto M, Tan K et al (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Pirity MK, Wang WL et al (2010) Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenetics Chromatin 30:21

    Article  CAS  Google Scholar 

  • Hong S, Kim S, Heo MA et al (2004) Coactivator ASC-2 mediates heat shock factor 1-mediated transactivation dependent on heat shock. FEBS Lett 559:165–170

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39:683–687

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Fujimoto M, Nakamura T et al (2007) Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem 282:33210–33217

    Article  CAS  PubMed  Google Scholar 

  • Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallio M, Chang Y, Manuel M et al (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan CD, Morris KR, Wu C, Winston F (2000) Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 14:2623–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Björklund S, Li Y et al (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608

    Article  CAS  PubMed  Google Scholar 

  • Kim TK, Ebright RH, Reinberg D (2000) Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418–1422

    Article  CAS  PubMed  Google Scholar 

  • Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kraus KW, Wolfner MF, Lis JT (1992) DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev 6:284–295

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The het-shock response. Annu Rev Biochem 55:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Lis JT (2007) Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450:198–202

    Article  CAS  PubMed  Google Scholar 

  • Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support. Cell 150:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min IM, Waterfall JJ, Core LJ et al (2011) Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev 25:742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736–4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou L, Xu JY, Li W et al (2010) Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Invest Ophthalmol Vis Sci 51:396–404

    Article  PubMed  Google Scholar 

  • Nakai A, Ishikawa T (2001) Cell cycle transition on stress conditions controlled by vertebrate heat shock factors. EMBO J 20:2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neef DW, Jaeger AM, Gomez-Pastor R et al (2014) A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 6:955–966

    Article  Google Scholar 

  • Ostling P, Björk JK, Roos-Mattjus P et al (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086

    Article  PubMed  Google Scholar 

  • Park JM, Werner J, Kim JM et al (2001) Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19

    Article  CAS  PubMed  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 Loci. Cell 134:78–84

    Article  Google Scholar 

  • Petesch SJ, Lis JT (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45:64–74

    Article  CAS  PubMed  Google Scholar 

  • Quararhni K, Hadj-Slimane R, Ait-Si-Ali S et al (2006) The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20:3324–3336

    Article  Google Scholar 

  • Raychaudhuri S, Loew C, Körner R et al (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 27:975–985

    Article  Google Scholar 

  • Reyes JC, Muchardt C, Yaniv M (1997) Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J Cell Biol 137:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–237

    Article  CAS  PubMed  Google Scholar 

  • Saunders A, Werner J, Andrulis ED et al (2003) Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkawa T, Tan K, Fujimoto M et al (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shopland LS, Hirayoshi K, Fernandes M, Lis JT (1995) HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 9:2756–2769

    Article  CAS  PubMed  Google Scholar 

  • Smith ST, Petruk S, Sedkov Y et al (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6:162–167

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Inouye S, Izu H et al (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182:88–96

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Wu J, Wickramasinghe P et al (2010) Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic Acids Res 39:190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Parmely TJ, Sato S et al (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 46:92–104

    Article  Google Scholar 

  • Takaki E, Fujimoto M, Sugahara K et al (2006) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281:4931–4937

    Article  CAS  PubMed  Google Scholar 

  • Takii R, Fujimoto M, Takaki E et al (2015) ATF1/CREB members modulate proteostasis capacity by regulating the stress-inducible HSF1-transcription complex. Mol Cell Biol 35:111–125

    Article  Google Scholar 

  • Tanabe M, Sasai N, Nagata K et al (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274:27845–27856

    Article  CAS  PubMed  Google Scholar 

  • Taylor IC, Workman JL, Schuetz TJ, Kingston RE (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev 5:1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Todd JP, Devanjan S, Longlong Y (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol BioSyst 2:627–639

    Article  Google Scholar 

  • Trinklein ND, Murray JI, Hartman AJ et al (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    Article  CAS  PubMed  Google Scholar 

  • Tulin A, Spradling A (2003) Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299:560–562

    Article  CAS  PubMed  Google Scholar 

  • Vihervaara A, Sergelius C, Vasara J et al (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Takagi T, Yamaguchi Y et al (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Lindquist S (1998) Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response. Development 125:4841–4850

    CAS  PubMed  Google Scholar 

  • Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61

    Article  CAS  PubMed  Google Scholar 

  • Weake VM, Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11:426–437

    Article  CAS  PubMed  Google Scholar 

  • Westerheide SD, Ancker J, Stevens SM Jr et al (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Zalmas LP, La Thangue NB (2008) A transcription cofactor required for the heat-shock response. EMBO Rep 9:662–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106:5569–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2:45–49

    Article  PubMed  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T et al (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    Article  CAS  PubMed  Google Scholar 

  • Yan LJ, Christians ES, Liu L et al (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Munson KM, Webb WW, Lis JT (2006) Dynamics of heat shock factor association with native gene loci in living cells. Nature 442:1050–1053

    Article  CAS  PubMed  Google Scholar 

  • Zelin E, Freeman BC (2015) Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J Mol Biol 427:1644–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 Complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuaki Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fujimoto, M. (2016). Transcriptional Regulation by HSF. In: Nakai, A. (eds) Heat Shock Factor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55852-1_4

Download citation

Publish with us

Policies and ethics