Skip to main content

Regulation of HSF Activation and Repression

  • Chapter
  • First Online:
Heat Shock Factor

Abstract

Heat shock response (HSR) is characterized by robust induction of heat shock proteins (HSPs) during heat shock and is regulated mainly at the level of transcription by heat shock factor (HSF). Preexisting inert HSF monomers undergo conformational change to form trimers that bind to DNA and to acquire transcriptional activity during heat shock and other stimuli. These two steps are separated processes and are induced by release from feedback repression by HSPs, direct effects of stimuli, posttranslational modifications, and others. Basal activity of HSF is also regulated in unstressed conditions. In this chapter, we review molecular mechanisms of activation and repression of HSF and describe stimuli that activate HSF by controlling these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  CAS  PubMed  Google Scholar 

  • Abravaya K, Phillips B, Morimoto RI (1991) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5:2117–2127

    Article  CAS  PubMed  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP et al (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R et al (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amici C, Sistonen L, Santoro MG et al (1992) Antiproliferative prostaglandins activate heat shock transcription factor. Proc Natl Acad Sci USA 89:6227–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anckar J, Hietakangas V, Denessiouk K et al (2006) Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol 26:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in drosophila by heat shock. Cell 17:241–254

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A et al (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersuker K, Hipp MS, Calamini B et al (2013) Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J Biol Chem 288:23633–23638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19:8033–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björk JK, Sistonen L (2010) Regulation of the members of the mammalian heat shock factor family. FEBS J 277:4126–4139

    Article  PubMed  CAS  Google Scholar 

  • Blake MJ, Udelsman R, Feulner GJ et al (1991) Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci USA 88:9873–9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boorstein WR, Craig EA (1990) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BudzyÅ„ski MA, Puustinen MC, Joutsen J et al (2015) Uncoupling stress-inducible phosphorylation of heat shock factor 1 from its activation. Mol Cell Biol 35:2530–2540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiang WC, Ching TT, Lee HC et al (2012) HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148:322–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu B, Soncin F, Price BD et al (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Zhong R, Soncin F et al (1998) Transcriptional activity of heat shock factor 1 at 37° C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem 273:18640–18646

    Article  CAS  PubMed  Google Scholar 

  • Chuma M, Sakamoto N, Nakai A et al (2014) Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis 35:272–281

    Article  CAS  PubMed  Google Scholar 

  • Clos J, Westwood JT, Becker PB et al (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to a negative regulation. Cell 63:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Cotto JJ, Kline M, Morimoto RI (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355–3358

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38:841–849

    Article  CAS  PubMed  Google Scholar 

  • Dai R, Frejtag W, He B et al (2000) c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 275:18210–18218

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Zhang C, Wu Y et al (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Whitesell L, Rogers AB et al (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Santagata S, Tang Z et al (2012) Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 122:3742–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai S, Tang Z, Cao J et al (2015) Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 34:275–293

    Article  CAS  PubMed  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    Article  CAS  PubMed  Google Scholar 

  • Duina AA, Kalton HM, Gaber RF (1998) Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273:18974–18978

    Article  CAS  PubMed  Google Scholar 

  • Farkas T, Kutskova YA, Zimarino V (1998) Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol 18:906–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett TW, Sylvester SL, Sarge KD et al (1994) Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem 269:32272–32278

    CAS  PubMed  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Takaki E, Hayashi T et al (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280:34908–34916

    Article  CAS  PubMed  Google Scholar 

  • Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh SK, Missra A, Gilmour DS (2011) Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor. Mol Cell Biol 31:4232–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 20:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson ML, Sarge KD (1995) Heat-inducible DNA binding of purified heat shock transcription factor 1. J Biol Chem 270:2447–2450

    Article  CAS  PubMed  Google Scholar 

  • Goodson ML, Hong Y, Rogers R et al (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276:18513–18518

    Article  CAS  PubMed  Google Scholar 

  • Goossens V, Grooten J, De Vos K et al (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green M, Schuetz TJ, Sullivan EK et al (1995) A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15:3354–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guettouche T, Boellmann F, Lane WS et al (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guisbert E, Herman C, Lu CZ et al (2004) A chaperone network controls the heat shock response in E. coli. Genes Dev 18:2812–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guisbert E, Yura T, Rhodius VA et al (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Guettouche T, Fenna M et al (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 276:45791–45799

    Article  CAS  PubMed  Google Scholar 

  • Hargitai J, Lewis H, Boros I et al (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695

    Article  CAS  PubMed  Google Scholar 

  • Hayashida N, Fujimoto M, Tan K et al (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensold JO, Hunt CR, Calderwood SK et al (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10:1600–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM et al (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hietakangas V, Anckar J, Blomster HA et al (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103:45–50

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Nakai A, Uemura Y et al (1995) Activation of heat shock factor 1 in rat brain during cerebral ischemia or after heat shock. Brain Res Mol Brain Res 34:262–270

    Article  CAS  PubMed  Google Scholar 

  • Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24:506–514

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa T, Rokutan K, Nikawa T et al (1996) Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology 111:345–357

    Article  CAS  PubMed  Google Scholar 

  • Hoang AT, Huang J, Rudra-Ganguly N et al (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Høj A, Jakobsen BK (1994) A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J 13:2617–2624

    PubMed  PubMed Central  Google Scholar 

  • Holbrook NJ, Carlson SG, Choi AM et al (1992) Induction of HSP70 gene expression by the antiproliferative prostaglandin PGA2: a growth-dependent response mediated by activation of heat shock transcription factor. Mol Cell Biol 12:1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A et al (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Rogers R, Matunis MJ et al (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276:40263–40267

    Article  CAS  PubMed  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Izu H, Takaki E et al (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279:38701–38709

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Oppermann H, Jackson J et al (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem 255:6975–6980

    CAS  PubMed  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA et al (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245

    Article  CAS  PubMed  Google Scholar 

  • Jurivich DA, Sistonen L, Sarge KD et al (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci USA 91:2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurivich DA, Pachetti C, Qiu L et al (1995) Salicylate triggers heat shock factor differently than heat. J Biol Chem 270:24489–24495

    Article  CAS  PubMed  Google Scholar 

  • Kawazoe Y, Nakai A, Tanabe M et al (1998) Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem 255:356–362

    Article  CAS  PubMed  Google Scholar 

  • Kelley PM, Schlesinger MJ (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Kieran D, Kalmar B, Dick JR et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Ouyang H, Li GC (1995) Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1. Proc Natl Acad Sci USA 92:2126–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kim D, Jung GS et al (1999) Involvement of c-Jun NH(2)-terminal kinase pathway in differential regulation of heat shock proteins by anticancer drugs. Biochem Biophys Res Commun 262:516–522

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Yoon JH, Lee SH et al (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280:12653–12657

    Article  CAS  PubMed  Google Scholar 

  • Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J et al (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793

    Article  CAS  PubMed  Google Scholar 

  • Kourtis N, Moubarak RS, Aranda-Orgilles B et al (2015) FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol 17:322–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroes RA, Abravaya K, Seidenfeld J et al (1991) Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor. Proc Natl Acad Sci USA 88:4825–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335:372–375

    Article  CAS  PubMed  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1995) In vitro activation of purified human heat shock factor by heat. Biochemistry 34:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Lee BS, Chen J, Angelidis C et al (1995) Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci USA 92:7207–7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Kim EH, Lee JS et al (2008) HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res 68:7550–7560

    Article  CAS  PubMed  Google Scholar 

  • Levinson W, Oppermann H, Jackson J (1980) Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta 606:170–180

    Article  CAS  PubMed  Google Scholar 

  • Li GC (1983) Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 115:116–122

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Herrler M, Landsberger N et al (1998) Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17:6300–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Kim HE, Li CR et al (2008) Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity. Biochemistry 47:6007–6015

    Article  CAS  PubMed  Google Scholar 

  • Manalo DJ, Liu AY (2001) Resolution, detection, and characterization of redox conformers of human HSF1. J Biol Chem 276:23554–23561

    Article  CAS  PubMed  Google Scholar 

  • Manalo DJ, Lin Z, Liu AY (2002) Redox-dependent regulation of the conformation and function of human heat shock factor 1. Biochemistry 41:2580–2588

    Article  CAS  PubMed  Google Scholar 

  • Marchler G, Wu C (2001) Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 20:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur SK, Sistonen L, Brown IR et al (1994) Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci USA 91:8695–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min JN, Huang L, Zimonjic DB et al (2007) Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26:5086–5097

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99

    Article  CAS  PubMed  Google Scholar 

  • Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DD, Kotzbauer PT, Sarge KD et al (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci USA 87:3748–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DD, Duchaine J, Massie B (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35:572–578

    Article  CAS  PubMed  Google Scholar 

  • Murshid A, Chou SD, Prince T et al (2010) Protein kinase a binds and activates heat shock factor 1. PLoS One 5:e13830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadeau K, Das A, Walsh CT (1993) Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487

    CAS  PubMed  Google Scholar 

  • Nair SC, Toran EJ, Rimerman RA et al (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neef DW, Jaeger AM, Gomez-Pastor R et al (2014) A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 9:955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton EM, Knauf U, Green M et al (1996) The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 16:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa J, Nakai A, Higashi T et al (1996) Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart. Circulation 94:2185–2192

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa J, Nakai A, Matsuda K et al (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941

    Article  CAS  PubMed  Google Scholar 

  • Otaka M, Yamamoto S, Ogasawara K et al (2007) The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by Geranylgeranylacetone (HSP-inducer). Biochem Biophys Res Commun 353:399–404

    Article  CAS  PubMed  Google Scholar 

  • Pirkkala L, Alastalo TP, Zuo X et al (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polla BS, Bachelet M, Elia G et al (1998) Stress proteins in inflammation. Ann NY Acad Sci 851:75–85

    Article  CAS  PubMed  Google Scholar 

  • Rabindran SK, Wisniewski J, Li L et al (1994) Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol Cell Biol 14:6552–6560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri S, Loew C, Körner R et al (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985

    Article  CAS  PubMed  Google Scholar 

  • Raynes R, Pombier KM, Nguyen K et al (2013) The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One 8:e54364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke H, Saini C, Fleury-Olela F et al (2008) Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter K, Haslbeck KM, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Santagata S, Hu R, Lin NU et al (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci USA 108:18378–18383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santagata S, Xu YM, Wijeratne EM et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7:340–349

    Article  CAS  PubMed  Google Scholar 

  • Santagata S, Mendillo ML, Tang YC et al (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarge KD, Zimarino V, Holm K et al (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schett G, Redlich K, Xu Q et al (1998) Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. J Clin Invest 102:302–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Lewis MJ, Pelham HR (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81–84

    Article  CAS  PubMed  Google Scholar 

  • Straus DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210

    Article  CAS  PubMed  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1989) The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev 3:2003–2310

    Article  CAS  PubMed  Google Scholar 

  • Straus D, Walter W, Gross CA (1990) DnaK, DnaJ & GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4:2202–2209

    Article  CAS  PubMed  Google Scholar 

  • Takaki E, Fujimoto M, Sugahara K et al (2006) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281:4931–4937

    Article  CAS  PubMed  Google Scholar 

  • Takii R, Fujimoto M, Tan K et al (2015) ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol Cell Biol 35:11–25

    Article  PubMed  CAS  Google Scholar 

  • Tateishi Y, Ariyoshi M, Igarashi R et al (2009) Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J Biol Chem 284:2435–2447

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M et al (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor cr32. J Bacteriol 171:1585–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T et al (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–581

    Article  CAS  PubMed  Google Scholar 

  • Trott A, West JD, Klaić L et al (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera M, Pani B, Griffiths LA et al (2014) The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 16:3e03164

    Google Scholar 

  • Vígh L, Literáti PN, Horváth I et al (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3:1150–1154

    Article  PubMed  Google Scholar 

  • Wang Z, Lindquist S (1998) Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response. Development 125:4841–4850

    CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Cui K et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279:56053–56060

    Article  CAS  PubMed  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr et al (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winegarden NA, Wong KS, Sopta M et al (1996) Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J Biol Chem 271:26971–26980

    Article  CAS  PubMed  Google Scholar 

  • Wolff S, Weissman JS, Dillin A (2014) Differential scales of protein quality control. Cell 157:52–64

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Mercier PA, McLoughlin CM et al (2000) Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem 275:29147–29152

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Voellmy R (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094–4102

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Zalmas LP, La Thangue NB (2008) A transcription cofactor required for the heat-shock response. EMBO Rep 9:662–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Orosz A, Wu C (1998) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101–108

    Article  CAS  PubMed  Google Scholar 

  • Zhong M, Kim SJ, Wu C (1999) Sensitivity of Drosophila heat shock transcription factor to low pH. J Biol Chem 274:3135–3140

    Article  CAS  PubMed  Google Scholar 

  • Zimarino V, Wilson S, Wu C (1990) Antibody-mediated activation of Drosophila heat shock factor in vitro. Science 249:546–549

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T et al (1998a) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Salminen WF, Roberts SM et al (1998b) Correlation between glutathione oxidation and trimerization of heat shock factor 1, an early step in stress induction of the Hsp response. Cell Stress Chaperones 3:130–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takaki, E., Nakai, A. (2016). Regulation of HSF Activation and Repression. In: Nakai, A. (eds) Heat Shock Factor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55852-1_3

Download citation

Publish with us

Policies and ethics