Skip to main content

Structure and Function of the HSF Family Members

  • Chapter
  • First Online:
Heat Shock Factor

Abstract

The heat shock response is a fundamental mechanism to adapt against various proteotoxic stresses in all living organisms. This response is characterized by the induction of heat shock proteins (HSPs) and regulated mainly at the level of transcription by heat shock factor (HSF). Vertebrate cells possess four HSF genes, which are located in the conserved syntenic regions among species. The amino acid sequences of the DNA-binding domain (DBD) and oligomerization domain (HR-A/B) located in the N-terminal region are highly conserved. The DBD interacts with genomic DNA, and HR-A/B is required for the formation of an HSF trimer that binds to DNA with high affinity. The HR-A/B is flanked by two nuclear localization signals. There are some activation or regulatory domains in the C-terminal region. Among HSF family members, HSF1 is a master regulator of the expression of HSP gene in mammalian cells, while that of non-HSP genes is also regulated by HSF2, HSF3, and HSF4. Furthermore, the HSF family members cooperatively or competitively regulate the expression of some common targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin J, Anathan J, Voellmy R (1998) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    Article  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonner JJ, Ballou C, Fackenthal DL (1994) Interactions between DNA-bound trimers of the yeast heat shock factor. Mol Cell Biol 14:501–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SA, Weirich CS, Newton EM et al (1998) Transcriptional activation domains stimulate initiation and elongation at different times and via different residues. EMBO J 17:3146–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu L, Jin Y, Shi Y et al (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276–278

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Ostling P, Akerfelt M et al (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicero MP, Hubl ST, Harrison CJ et al (2001) The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res 29:1715–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clos J, Westwood JT, Becker PB et al (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Clos J, Rabindran S, Wisniewski J et al (1993) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364:252–255

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE (1993) Proteins: structures and molecular properties. W H Freeman & Company, New York

    Google Scholar 

  • Damberger FF, Pelton JG, Liu C et al (1995) Refined solution structure and dynamics of the DNA-binding domain of the heat shock factor from Kluyveromyces lactis. J Mol Biol 254:704–719

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Chen T, Tran K, Parker CS (2001) Developmental regulation of the heat shock response by nuclear transport factor karyopherin-alpha3. Development 128(17):3349–3358

    CAS  PubMed  Google Scholar 

  • Fernandes M, O’Breien T, Lis JT (1994) Structure and regulation of heat shock gene promoters. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 375–393

    Google Scholar 

  • Flick KE, Gonzalez L Jr, Harrison CJ et al (1994) Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins. J Biol Chem 269:12475–12481

    CAS  PubMed  Google Scholar 

  • Fujimoto M, Izu H, Seki K et al (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Oshima K, Shinkawa T et al (2008) Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J Biol Chem 283:29961–29970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Hayashida N, Katoh T et al (2010) A novel mouse HSF3 has the potential to activate non-classical heat shock genes during heat shock. Mol Biol Cell 20:106–116

    Article  CAS  Google Scholar 

  • Fujimoto M, Takaki E, Takii R et al (2012) RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194

    Article  CAS  PubMed  Google Scholar 

  • Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  CAS  PubMed  Google Scholar 

  • Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperature in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13:749–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardina C, Lis JT (1995) Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol Cell Biol 15:2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green M, Schuetz TJ, Sullivan EK et al (1995) A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15:3354–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224–227

    Article  CAS  PubMed  Google Scholar 

  • Hilgarth RS, Murphy LA, O’Connor CM et al (2004) Identification of Xenopus heat shock transcription factor-2: conserved role of sumoylation in regulating deoxyribonucleic acid-binding activity of heat shock transcription factor-2 proteins. Cell Stress Chaperones 9:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland PW, Garcia-Fernàndez J, Williams NA et al (1994) Gene duplications and the origins of vertebrate development. Development 1994(Suppl):125–133, PMID: 7579513

    Google Scholar 

  • Hsu T, Yeh FL (2002) Differential regulation of spontaneous and heat-induced HSP 70 expression in developing zebrafish (Danio rerio). J Exp Zool 293:349–359

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Katsuki K, Izu H et al (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Izu H, Inouye S, Fujimoto M et al (2004) HSF1 is involved in quality control mechanisms in male germ cells. Biol Reprod 70:18–24

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen BK, Pelham HR (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen BK, Pelham HR (1991) A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J 10:369–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallio M, Chang Y, Manuel M et al (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Aravind L, Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101:573–576

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A et al (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  CAS  PubMed  Google Scholar 

  • Kroeger PE, Morimoto RI (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 14:7592–7603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Littlefield O, Nelson HC (1999) A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF-DNA cocrystal. Nat Struct Biol 6:464–470

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Thiele DJ (1996) Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10:592–603

    Article  CAS  PubMed  Google Scholar 

  • Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DR, Xiao X, Shao L et al (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  CAS  PubMed  Google Scholar 

  • McMillan DR, Christians E, Forster M et al (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22:8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier PA, Foksa J, Ovsenek N et al (1997) Xenopus heat shock factor 1 is a nuclear protein before heat stress. J Biol Chem 272:14147–14151

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Santoro N, Koch KA et al (1999) A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 19:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  • Nakai A, Ishikawa T (2000) A nuclear localization signal is essential for stress-induced dimer-to-trimer transition of heat shock transcription factor 3. J Biol Chem 275:34665–34671

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Ishikawa T (2001) Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. EMBO J 20:2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13:1983–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai A, Kawazoe Y, Tanabe M et al (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3 are induced in the avian erythroblast cell line HD6. Mol Cell Biol 15:5268–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y et al (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton EM, Knauf U, Green M et al (1996) The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 16:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Orosz A, Wisniewski J, Wu C (1996) Regulation of Drosophila heat shock factor trimerization : global sequence requirements and independence of nuclear localization. Mol Cell Biol 16:7018–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Östling P, Björk JK, Roos-Mattjus P et al (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Patterson C (2001) Evolution (Translated by Mawatari S, Uehara M, Isono N), 2nd edn, p 181

    Google Scholar 

  • Pelham HR (1985) Activation of heat-shock genes in eukaryotes. Trends Genet 1:31–35

    Article  CAS  Google Scholar 

  • Perisic O, Xiao H, Lis JT (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to tail repeats of a conserved 5bp recognition unit. Cell 59:797–806

    Article  CAS  PubMed  Google Scholar 

  • Peteranderl R, Rabenstein M, Shin YK et al (1999) Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 38:3559–3569

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • RÃ¥bergh CM, Airaksinen S, Soitamo A et al (2000) Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress. J Exp Biol 203:1817–1824

    PubMed  Google Scholar 

  • Rabindran SK, Giorgi G, Clos J et al (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A 88:6906–6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J et al (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri S, Loew C, Körner R et al (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985

    Article  CAS  PubMed  Google Scholar 

  • Sandqvist A, Björk JK, Ã…kerfelt M et al (2009) Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20:1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge KD, Zimarino V, Holm K et al (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I et al (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schuetz TJ, Gallo GJ, Sheldon L et al (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A 88:6911–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sémon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Sheldon LA, Kingston RE (1993) Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Dev 7:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Kroeger PE, Morimoto RI (1995) The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol 15:4309–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkawa T, Tan K, Fujimoto M et al (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 14:2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Nelson HC (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  CAS  PubMed  Google Scholar 

  • Stump DG, Landsberger N, Wolffe AP (1995) The cDNA encoding Xenopus laevis heat-shock factor 1 (XHSF1): nucleotide and deduced amino-acid sequences, and properties of the encoded protein. Gene 160:207–211

    Article  CAS  PubMed  Google Scholar 

  • Swan CL, Evans TG, Sylvain N et al (2012) Zebrafish HSF4: a novel protein that shares features of both HSF1 and HSF4 of mammals. Cell Stress Chaperones 17:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaki E, Fujimoto M, Sugahara K et al (2006) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281:4931–4937

    Article  CAS  PubMed  Google Scholar 

  • Takii R, Fujimoto M, Tan K et al (2015) ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol Cell Biol 35:11–25

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Nakai A, Kawazoe Y et al (1997) Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J Biol Chem 272:15389–15395

    Article  CAS  PubMed  Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S et al (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe M, Sasai N, Nagata K et al (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274:27845–27856

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ et al (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuister GW, Kim SJ, Orosz A et al (1994a) Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1:605–614

    Article  CAS  PubMed  Google Scholar 

  • Vuister GW, Kim SJ, Wu C et al (1994b) NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors. Biochemistry 33:10–16

    Article  CAS  PubMed  Google Scholar 

  • Vujanac M, Fenaroli A, Zimarino V (2005) Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic 6:214–229

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang J, Moskophidis D et al (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ying Z, Jin X et al (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80

    Article  PubMed  CAS  Google Scholar 

  • Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593

    Article  CAS  PubMed  Google Scholar 

  • Yeh FL, Hsu LY, Lin BA et al (2006) Cloning of zebrafish (Danio rerio) heat shock factor 2 (HSF2) and similar patterns of HSF2 and HSF1 mRNA expression in brain tissues. Biochimie 88:1983–1988

    Article  CAS  PubMed  Google Scholar 

  • Yoshima T, Yura T, Yanagi H (1998a) Heat shock factor 1 mediates hemin-induced hsp70 gene transcription in K562 erythroleukemia cells. J Biol Chem 273:25466–25471

    Article  CAS  PubMed  Google Scholar 

  • Yoshima T, Yura T, Yanagi H (1998b) Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment. Nucleic Acids Res 26:2580–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarzov P, Boucherie H, Mann C (1997) A yeast heat shock transcription factor (Hsf1) mutant is defective in both Hsc82/Hsp82 synthesis and spindle pole body duplication. J Cell Sci 110:1879–1891

    CAS  PubMed  Google Scholar 

  • Zatsepina OG, Ulmasov KA, Beresten SF et al (2000) Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation. J Exp Biol 203:1017–1025

    CAS  PubMed  Google Scholar 

  • Zhang Y, Huang L, Zhang J et al (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86:376–393

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Rungger D, Voellmy R (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Takii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takii, R., Fujimoto, M. (2016). Structure and Function of the HSF Family Members. In: Nakai, A. (eds) Heat Shock Factor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55852-1_2

Download citation

Publish with us

Policies and ethics