Skip to main content

Structural Fluctuations of Proteins in Folding and Ligand Docking Studied by Replica-Exchange Simulations

  • Chapter
  • First Online:
  • 700 Accesses

Abstract

In biomolecular systems with many degrees of freedom such as proteins and nucleic acids, there exists an astronomically large number of local-minimum free energy states. Conventional simulations in the canonical ensemble encounter with great difficulty, because they tend to get trapped in states of these local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. and can overcome this difficulty. From only one simulation run, one can obtain canonical ensemble averages of physical quantities as functions of temperature, pressure, etc. by the reweighting techniques. In this chapter, we review uses of the generalized-ensemble algorithms in biomolecular systems. A well-known method, namely, replica-exchange method, is described first. We then present various extensions of the replica-exchange method. The effectiveness of the methods is tested with protein folding and ligand docking simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hansmann UHE, Okamoto Y (1999) New Monte Carlo algorithms for protein folding. Curr Opin Struct Biol 9:177–183

    Article  CAS  Google Scholar 

  2. Mitsutake A, Sugita Y, Okamoto Y (2001) Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60:96–123

    Article  CAS  Google Scholar 

  3. Sugita Y, Okamoto Y (2002) Free-energy calculations in protein folding by generalized-ensemble algorithms. In: Schlick T, Gan HH (eds) Lecture notes in computational science and engineering. Springer, Berlin, pp 304–332, e-print: cond-mat/0102296

    Google Scholar 

  4. Okumura H, Itoh SG, Okamoto Y (2012) Generalized-ensemble algorithms for simulations of complex molecular systems. In: Leszezynski J, Shukla MK (eds) Practical aspects of computational chemistry II. Springer, Dordrecht, pp 69–101

    Chapter  Google Scholar 

  5. Mitsutake A, Mori Y, Okamoto Y (2012) Enhanced sampling algorithms. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols. Humana Press, New York, pp 153–195

    Google Scholar 

  6. Okamoto Y, Kokubo H, Tanaka T (2013) Ligand docking simulations by generalized-ensemble algorithms. In: Karabencheva-Christova T (ed) Advances in protein chemistry and structural biology, vol 92. Academic, Burlington, pp 63–91

    Google Scholar 

  7. Yoda T, Sugita Y, Okamoto Y (2014) Protein folding simulations by generalized-ensemble algorithms. In: Han K-L, Zhang X, Yang M-J (eds) Protein conformational dynamics, advances in experimental medicine and biology, vol 805. Springer, Berlin, pp 1–27

    Chapter  Google Scholar 

  8. Hukushima K, Nemoto K (1996) Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn 65:1604–1608

    Article  CAS  Google Scholar 

  9. Marinari E, Parisi G, Ruiz-Lorenzo JJ (1997) Numerical simulations of spin glass systems. In: Young AP (ed) Spin glasses and random fields. World Scientific, Singapore, pp 59–98

    Chapter  Google Scholar 

  10. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  11. Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-exchange method for free-energy calculations. J Chem Phys 113:6042–6051

    Article  CAS  Google Scholar 

  12. Fukunishi F, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067

    Article  CAS  Google Scholar 

  13. Torrie GM, Valleau JP (1997) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  14. Mitsutake A, Okamoto Y (2009) Multidimensional generalized-ensemble algorithms for complex systems. J Chem Phys 130:214105 (14 pages)

    Article  Google Scholar 

  15. Mitsutake A (2009) Simulated-tempering replica-exchange method for the multidimensional version. J Chem Phys 131:094105 (15 pages)

    Article  Google Scholar 

  16. Okabe T, Kawata M, Okamoto Y, Mikami M (2001) Replica-exchange Monte Carlo method for the isobaric-isothermal ensemble. Chem Phys Lett 335:435–439

    Article  CAS  Google Scholar 

  17. Okumura H, Okamoto Y (2006) Multibaric-multithermal ensemble molecular dynamics simulations. J Comput Chem 27:379–395

    Article  CAS  Google Scholar 

  18. Mori Y, Okamoto Y (2010) Generalized-ensemble algorithms for the isobaric-isothermal ensemble. J Phys Soc Jpn 79:074003 (5 pages)

    Article  Google Scholar 

  19. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  20. Mori Y, Okamoto Y (2010) Replica-exchange molecular dynamics simulations for various constant temperature algorithms. J Phys Soc Jpn 79:074001 (8 pages)

    Article  Google Scholar 

  21. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198

    Article  CAS  Google Scholar 

  22. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  23. Mitsutake A, Sugita Y, Okamoto Y (2003) Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides I. Formulation and benchmark test. J Chem Phys 118:6664–6675

    Article  CAS  Google Scholar 

  24. Kokubo H, Okamoto Y (2004) Prediction of transmembrane helix configurations by replica-exchange simulations. Chem Phys Lett 383:397–402

    Article  CAS  Google Scholar 

  25. Kokubo H, Okamoto Y (2004) Prediction of membrane protein structures by replica-exchange Monte Carlo simulations: case of two helices. J Chem Phys 120:10837–10847

    Article  CAS  Google Scholar 

  26. Kokubo H, Okamoto Y (2009) Analysis of helix-helix interactions of bacteriorhodopsin by replica-exchange simulations. Biophys J 96:765–776

    Article  CAS  Google Scholar 

  27. Urano R, Kokubo H, Okamoto Y (2015) Predictions of tertiary structures of α-helical membrane proteins by replica-exchange method with consideration of helix deformations. J Phys Soc Jpn 84:084802 (12 pages)

    Article  Google Scholar 

  28. Kokubo H, Tanaka T, Okamoto Y (2011) Ab initio prediction of protein-ligand binding structures by replica-exchange umbrella sampling simulations. J Comput Chem 32:2810–2821

    Article  CAS  Google Scholar 

  29. Kokubo H, Tanaka T, Okamoto Y (2013) Prediction of protein-ligand binding structures by replica-exchange umbrella sampling simulations: application to kinase systems. J Chem Theory Comput 9:4660–4671

    Article  CAS  Google Scholar 

  30. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  31. Kokubo H, Tanaka T, Okamoto Y (2013) Two-dimensional replica-exchange method for predicting protein-ligand binding structures. J Comput Chem 34:2601–2614

    Article  CAS  Google Scholar 

  32. Okamoto Y, Kokubo H, Tanaka T (2014) Prediction of ligand binding affinity by the combination of replica-exchange method and double-decoupling method. J Chem Theory Comput 10:3563–3569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks his co-workers for useful discussions. In particular, he is grateful to Drs. A. Kitao, H. Kokubo, A. Mitsutake, Y. Sugita, T. Tanaka, and R. Urano for collaborations that led to the results presented in the present chapter. This work was supported, in part, by the Grant-in-Aid for Scientific Research on Innovative Areas (“Fluctuations and Biological Functions”) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Okamoto, Y. (2016). Structural Fluctuations of Proteins in Folding and Ligand Docking Studied by Replica-Exchange Simulations. In: Terazima, M., Kataoka, M., Ueoka, R., Okamoto, Y. (eds) Molecular Science of Fluctuations Toward Biological Functions . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55840-8_9

Download citation

Publish with us

Policies and ethics