Skip to main content

Unfoldomes and Unfoldomics: Introducing Intrinsically Disordered Proteins

  • Chapter
  • First Online:

Abstract

The last decade and a half has witnessed the fall of one of the major paradigms in structural biology. Contrary to the more than a hundred year-old belief that unique protein function is defined by unique crystal-like protein structure which is encoded in unique amino acid sequence, many biologically active proteins lack stable tertiary and/or secondary structure under physiological conditions in vitro. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are very different from ordered proteins and domains at the variety of levels, starting from the specific and well-recognizable amino acid composition and sequence biases and ending with engagement in biological functions non-accessible to entities with unique and fixed structures. IDPs/IDPRs are highly abundant in nature, and many of them are associated with various human diseases. The functional repertoire of IDPs complements the functions of ordered proteins, with IDPs being often involved in regulation, signaling, and control. Due to their exceptional commonness within the protein universe, combined with a set of specific structural and conformational features, and broad and unique functional repertoire, IDPs and hybrid proteins possessing ordered domains and functional IDPRs clearly comprise unfoldomes within all known proteomes. This chapter provides a brief description of IDPs/IDPRs and shows the place of these exceptionally interesting creatures within the protein kingdom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  2. Lemieux UR, Spohr U (1994) How Emil Fischer was led to the lock and key concept for enzyme specificity. Adv Carbohydr Chem Biochem 50:1–20

    Article  CAS  Google Scholar 

  3. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    Article  CAS  Google Scholar 

  4. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1

    Article  Google Scholar 

  5. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    Article  CAS  Google Scholar 

  6. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    Article  CAS  Google Scholar 

  7. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    Article  CAS  Google Scholar 

  8. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    Article  CAS  Google Scholar 

  9. Dunker AK, Obradovic Z (2001) The protein trinity – linking function and disorder. Nat Biotechnol 19(9):805–806

    Article  CAS  Google Scholar 

  10. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456

    Article  CAS  Google Scholar 

  11. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    Article  CAS  Google Scholar 

  12. Dunker AK, Uversky VN (2008) Signal transduction via unstructured protein conduits. Nat Chem Biol 4(4):229–230

    Article  CAS  Google Scholar 

  13. Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916

    Article  CAS  Google Scholar 

  14. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932

    Article  CAS  Google Scholar 

  15. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898

    Article  CAS  Google Scholar 

  16. Cortese MS, Uversky VN, Keith Dunker A (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98(1):85–106

    Article  CAS  Google Scholar 

  17. Russell RB, Gibson TJ (2008) A careful disorderliness in the proteome: sites for interaction and targets for future therapies. FEBS Lett 582(8):1271–1275

    Article  CAS  Google Scholar 

  18. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1

    Article  CAS  Google Scholar 

  19. Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18(11):1169–1175

    Article  CAS  Google Scholar 

  20. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384

    Article  CAS  Google Scholar 

  21. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  CAS  Google Scholar 

  22. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  CAS  Google Scholar 

  23. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  CAS  Google Scholar 

  24. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  Google Scholar 

  25. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Article  CAS  Google Scholar 

  26. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354

    Article  CAS  Google Scholar 

  27. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  Google Scholar 

  28. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  CAS  Google Scholar 

  29. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000

    Article  CAS  Google Scholar 

  30. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci U S A 93(21):11504–11509

    Article  CAS  Google Scholar 

  31. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW (2004) p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11(4):358–364

    Article  CAS  Google Scholar 

  32. Lacy ER, Wang Y, Post J, Nourse A, Webb W, Mapelli M, Musacchio A, Siuzdak G, Kriwacki RW (2005) Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349(4):764–773

    Article  CAS  Google Scholar 

  33. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    Article  CAS  Google Scholar 

  34. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44:12454–12470

    Article  CAS  Google Scholar 

  35. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477

    Article  CAS  Google Scholar 

  36. Mohan A (2006) MoRFs: a dataset of molecular recognition features. Master of Science, Indiana University, Indianapolis

    Google Scholar 

  37. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366

    Article  CAS  Google Scholar 

  38. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  39. Cortese MS, Baird JP, Uversky VN, Dunker AK (2005) Uncovering the unfoldome: enriching cell extracts for unstructured proteins by acid treatment. J Proteome Res 4(5):1610–1618

    Article  CAS  Google Scholar 

  40. Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 10(Suppl 1):S12

    Article  CAS  Google Scholar 

  41. Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen – und Tierreiche. Verlag Fischer, Jena

    Google Scholar 

  42. Lederberg J, McCray AT (2001) ‘Ome’ sweet ‘omics’ – a genealogical treasury of words. Scientist 15(7):8

    Google Scholar 

  43. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7

    Article  CAS  Google Scholar 

  44. Uversky VN, Gillespie JR, Fink AL (2000) Why are ‘natively unfolded’ proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  Google Scholar 

  45. Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65(1):1–14

    Article  CAS  Google Scholar 

  46. Dosztanyi Z, Sandor M, Tompa P, Simon I (2007) Prediction of protein disorder at the domain level. Curr Protein Pept Sci 8(2):161–171

    Article  CAS  Google Scholar 

  47. Dosztanyi Z, Tompa P (2008) Prediction of protein disorder. Methods Mol Biol 426:103–115

    Article  CAS  Google Scholar 

  48. Hubbard SJ, Beynon RJ, Thornton JM (1998) Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng 11(5):349–359

    Article  CAS  Google Scholar 

  49. Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ (2001) Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10(7):1353–1362

    Article  CAS  Google Scholar 

  50. Reeves R, Nissen MS (1999) Purification and assays for high mobility group HMG-I(Y) protein function. Methods Enzymol 304:155–188

    Article  CAS  Google Scholar 

  51. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley, Weinheim, pp 271–353

    Google Scholar 

  52. Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45

    Article  CAS  Google Scholar 

  53. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12

    Article  CAS  Google Scholar 

  54. Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, ph, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28:305–325

    Article  CAS  Google Scholar 

  55. Csizmok V, Szollosi E, Friedrich P, Tompa P (2006) A novel two-dimensional electrophoresis technique for the identification of intrinsically unstructured proteins. Mol Cell Proteomics 5(2):265–273

    Article  CAS  Google Scholar 

  56. Galea CA, Pagala VR, Obenauer JC, Park CG, Slaughter CA, Kriwacki RW (2006) Proteomic studies of the intrinsically unstructured mammalian proteome. J Proteome Res 5(10):2839–2848

    Article  CAS  Google Scholar 

  57. Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequences. In: IEEE International Conference Neural Networks, vol 1, pp 90–95

    Google Scholar 

  58. Romero P, Obradovic Z, Dunker K (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform 8:110–124

    CAS  Google Scholar 

  59. Xie Q, Arnold GE, Romero P, Obradovic Z, Garner E, Dunker AK (1998) The sequence attribute method for determining relationships between sequence and protein disorder. Genome Inform Ser Workshop Genome Inform 9:193–200

    CAS  Google Scholar 

  60. Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, Guilliot S, Dunker AK (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput:437–448

    Google Scholar 

  61. Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Muller-Frohne M, Zirwer D, Czarnecki J, Damaschun G (1995) Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry 34(40):13211–13218

    Article  CAS  Google Scholar 

  62. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715

    Article  CAS  Google Scholar 

  63. Hemmings HC Jr, Nairn AC, Aswad DW, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci 4(1):99–110

    CAS  Google Scholar 

  64. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput:473–484

    Google Scholar 

  65. Garner E, Cannon P, Romero P, Obradovic Z, Dunker AK (1998) Predicting disordered regions from amino acid sequence: common themes despite differing structural characterization. Genome Inform Ser Workshop Genome Inform 9:201–213

    CAS  Google Scholar 

  66. Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput:89–100

    Google Scholar 

  67. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  Google Scholar 

  68. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80

    Article  CAS  Google Scholar 

  69. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    Article  CAS  Google Scholar 

  70. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52(4):573–584

    Article  CAS  Google Scholar 

  71. Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40

    CAS  Google Scholar 

  72. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    Article  CAS  Google Scholar 

  73. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of disorder. Proteins 61:176–182

    Article  CAS  Google Scholar 

  74. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinf 7:208

    Article  CAS  Google Scholar 

  75. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  CAS  Google Scholar 

  76. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  CAS  Google Scholar 

  77. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  Google Scholar 

  78. Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins 53(Suppl 6):573–578

    Article  CAS  Google Scholar 

  79. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

    Article  CAS  Google Scholar 

  80. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33(Web Server issue):W36–W38

    Article  CAS  Google Scholar 

  81. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    Article  CAS  Google Scholar 

  82. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22(23):2948–2949

    Article  CAS  Google Scholar 

  83. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    Article  CAS  Google Scholar 

  84. Su CT, Chen CY, Ou YY (2006) Protein disorder prediction by condensed PSSM considering propensity for order or disorder. BMC Bioinf 7:319

    Article  CAS  Google Scholar 

  85. Su CT, Chen CY, Hsu CM (2007) iPDA: integrated protein disorder analyzer. Nucleic Acids Res 35(Web Server issue):W465–W472

    Article  Google Scholar 

  86. Vullo A, Bortolami O, Pollastri G, Tosatto SC (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34(Web Server issue):W164–W168

    Article  CAS  Google Scholar 

  87. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464

    Article  Google Scholar 

  88. Mohan A, Sullivan WJ Jr, Radivojac P, Dunker AK, Uversky VN (2008) Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol Biosyst 4(4):328–340

    Article  CAS  Google Scholar 

  89. Rantalainen KI, Uversky VN, Permi P, Kalkkinen N, Dunker AK, Makinen K (2008) Potato virus a genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. Virology 377(2):280–288

    Article  CAS  Google Scholar 

  90. Hebrard E, Bessin Y, Michon T, Longhi S, Uversky VN, Delalande F, Van Dorsselaer A, Romero P, Walter J, Declerk N, Fargette D (2009) Intrinsic disorder in viral proteins genome-linked: experimental and predictive analyses. Virol J 6:23

    Article  CAS  Google Scholar 

  91. Feng ZP, Zhang X, Han P, Arora N, Anders RF, Norton RS (2006) Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes. Mol Biochem Parasitol 150(2):256–267

    Article  CAS  Google Scholar 

  92. Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5(8):1996–2000

    Article  CAS  Google Scholar 

  93. Galea CA, High AA, Obenauer JC, Mishra A, Park CG, Punta M, Schlessinger A, Ma J, Rost B, Slaughter CA, Kriwacki RW (2009) Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome. J Proteome Res 8(1):211–226

    Article  CAS  Google Scholar 

  94. Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN (2010) Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 4(Suppl 1):S1

    Article  CAS  Google Scholar 

  95. Burra PV, Kalmar L, Tompa P (2010) Reduction in structural disorder and functional complexity in the thermal adaptation of prokaryotes. PLoS One 5(8), e12069

    Article  CAS  Google Scholar 

  96. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264

    Article  CAS  Google Scholar 

  97. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    Article  CAS  Google Scholar 

  98. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    Article  CAS  Google Scholar 

  99. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834:932–951

    Article  CAS  Google Scholar 

  100. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    Article  CAS  Google Scholar 

  101. Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu R, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1(1): e24157

    Google Scholar 

  102. Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasilenko RN, Vasiliev AM, Rodionov IL, Kozlovskaya GD, Dolgikh DA, Fink AL, Doniach S, Permyakov EA, Abramov VM (2000) Zn(2+)-mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha. Biochem Biophys Res Commun 267(2):663–668

    Article  CAS  Google Scholar 

  103. Ma B, Kumar S, Tsai CJ, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng 12(9):713–720

    Article  CAS  Google Scholar 

  104. Uversky VN, Roman A, Oldfield CJ, Dunker AK (2006) Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 5(8):1829–1842

    Article  CAS  Google Scholar 

  105. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45(35):10448–10460

    Article  CAS  Google Scholar 

  106. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    Article  CAS  Google Scholar 

  107. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690

    Article  CAS  Google Scholar 

  108. Dev KK, Hofele K, Barbieri S, Buchman VL, van der Putten H (2003) Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45(1):14–44

    Article  CAS  Google Scholar 

  109. Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234

    Article  CAS  Google Scholar 

  110. Dunker AK, Uversky VN (2010) Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 10(6):782–788

    Article  CAS  Google Scholar 

  111. Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform Ser Workshop Genome Inform 10:41–50

    CAS  Google Scholar 

  112. Chen CT, Wagner H, Still WC (1998) Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279(5352):851–853

    Article  CAS  Google Scholar 

  113. Chene P (2004) Inhibition of the p53-hdm2 interaction with low molecular weight compounds. Cell Cycle 3(4):460–461

    Article  CAS  Google Scholar 

  114. Chene P (2004) Inhibition of the p53-MDM2 interaction: targeting a protein-protein interface. Mol Cancer Res 2(1):20–28

    CAS  Google Scholar 

  115. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  CAS  Google Scholar 

  116. Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275(38):29426–29432

    Article  CAS  Google Scholar 

  117. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  Google Scholar 

  118. Klein C, Vassilev LT (2004) Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 91(8):1415–1419

    CAS  Google Scholar 

  119. Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3(4):419–421

    Article  CAS  Google Scholar 

  120. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24(10):435–442

    Article  CAS  Google Scholar 

  121. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317

    Article  CAS  Google Scholar 

  122. Arkin M (2005) Protein-protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 9(3):317–324

    Article  CAS  Google Scholar 

  123. Cochran AG (2000) Antagonists of protein-protein interactions. Chem Biol 7(4):R85–R94

    Article  CAS  Google Scholar 

  124. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ (2009) Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc 131(21):7390–7401

    Article  CAS  Google Scholar 

  125. Uversky VN (2011) Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. Biochim Biophys Acta-Proteins Proteomics 1814(5):693–712

    Article  CAS  Google Scholar 

  126. Uversky VN (2012) Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discovery 7(6):475–488

    Article  CAS  Google Scholar 

  127. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20

    Article  CAS  Google Scholar 

  128. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103(22):8390–8395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This review would not be possible without many colleagues who, over the years, contributed to the introduction and development of the IDP field. Numerous very helpful and thought-promoting discussions with our colleagues and friends are deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Xue, B., Uversky, V.N. (2016). Unfoldomes and Unfoldomics: Introducing Intrinsically Disordered Proteins. In: Terazima, M., Kataoka, M., Ueoka, R., Okamoto, Y. (eds) Molecular Science of Fluctuations Toward Biological Functions . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55840-8_6

Download citation

Publish with us

Policies and ethics