Skip to main content

Site-Specific Incorporation of Fluorescent Nonnatural Amino Acids into Proteins and Its Application to Fluorescence Analysis of Proteins

  • Chapter
  • First Online:
Book cover Molecular Science of Fluctuations Toward Biological Functions

Abstract

Nonnatural amino acid mutagenesis using expanded genetic codes allows us to introduce artificial functional groups such as fluorophores at specific sites of proteins. By applying this technique, site-specific fluorescence labeling has been achieved. This method enables to generate fluorescent protein probes that show ligand-dependent fluorescence change based on fluorescence quenching of the incorporated fluorophores by endogenous Trp residues. This strategy has been proved to be effective using ligand-binding proteins and antibodies. Moreover, site-specific double-labeling of ligand-binding proteins with two fluorophores using two expanded genetic codons has achieved ratiometric detection of the ligand binding based on FRET and fluorescence quenching. These achievements demonstrate the usefulness of the site-specific incorporation of fluorescent nonnatural amino acids and their potential utility as research and diagnostic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed 44:34

    Article  CAS  Google Scholar 

  2. Budisa N (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew Chem Int Ed 43:6426

    Article  CAS  Google Scholar 

  3. Link J, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603

    Article  CAS  Google Scholar 

  4. Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147

    Article  CAS  Google Scholar 

  5. Zhang WH, Otting G, Jackson CJ (2013) Protein engineering with unnatural amino acids. Curr Opin Struct Biol 23:581

    Article  CAS  Google Scholar 

  6. Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809

    Article  CAS  Google Scholar 

  7. Hohsaka T, Ashizuka Y, Murakami H, Sisido M (1996) Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J Am Chem Soc 118:9778

    Article  CAS  Google Scholar 

  8. Hohsaka T, Kajihara D, Ashizuka Y, Murakami H, Sisido M (1999) Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems. J Am Chem Soc 121:34

    Article  CAS  Google Scholar 

  9. Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M (2001) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an E. coli in vitro translation system. Biochemistry 40:11060

    Article  CAS  Google Scholar 

  10. Robertson SA, Ellman JA, Schultz PG (1991) A general and efficient route for chemical aminoacylation of transfer RNAs. J Am Chem Soc 113:2722

    Article  CAS  Google Scholar 

  11. Hecht SM, Alford BL, Kuroda Y, Kitano S (1978) “Chemical aminoacylation” of tRNA’s. J Biol Chem 253:4517

    CAS  Google Scholar 

  12. Kajihara D, Abe R, Iijima I, Komiyama C, Sisido M, Hohsaka T (2006) FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat Methods 3:923

    Article  CAS  Google Scholar 

  13. Abe R, Shiraga K, Ebisu S, Takagi H, Hohsaka T (2010) Incorporation of fluorescent non-natural amino acids into N-terminal tag of proteins in cell-free translation and its dependence on position and neighboring codons. J Biosci Bioeng 110:32

    Article  CAS  Google Scholar 

  14. Miyawaki A et al (1997) Fluorescent indicators for Ca based on green fluorescent proteins and calmodulin. Nature 388:882

    Article  CAS  Google Scholar 

  15. Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295

    Article  CAS  Google Scholar 

  16. Hohsaka T, Ashizuka Y, Sasaki H, Murakami H, Sisido M (1999) Incorporation of two different nonnatural amino acids independently into a single protein through extension of the genetic code. J Am Chem Soc 121:12194

    Article  CAS  Google Scholar 

  17. Taki M, Hohsaka T, Murakami H, Taira K, Sisido M (2002) Position-specific incorporation of a fluorophore-quencher pair into a single streptavidin through orthogonal four-base codon/anticodon pairs. J Am Chem Soc 124:14586

    Article  CAS  Google Scholar 

  18. Marme N, Knemeyer J-P, Sauer M, Wolfrum J (2003) Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug Chem 14:1133

    Article  CAS  Google Scholar 

  19. Iijima I, Hohsaka T (2009) Position-specific incorporation of fluorescent non-natural amino acids into maltosebinding protein for detection of ligand binding by FRET and fluorescence quenching. ChemBioChem 17:999

    Article  Google Scholar 

  20. Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5:997

    Article  CAS  Google Scholar 

  21. Li IT, Pham E, Truong K (2006) Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 28:1971

    Article  CAS  Google Scholar 

  22. Otsuji T, Okuda-Ashitaka E, Kojima S, Akiyama H, Ito S, Ohmiya Y (2004) Monitoring for dynamic biological processing by intramolecular bioluminescence resonance energy transfer system using secreted luciferase. Anal Biochem 329:230

    Article  CAS  Google Scholar 

  23. Gammon ST, Villalobos VM, Roshal M, Samrakandi M, Piwnica-Worms D (2009) Rational design of novel redshifted BRET pairs: platforms for real-time single-chain protease biosensors. Biotechnol Prog 25:559

    Article  CAS  Google Scholar 

  24. Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 6:334

    Article  CAS  Google Scholar 

  25. Yamaguchi A, Hohsaka T (2012) Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids. Bull Chem Soc Jpn 85:576

    Article  CAS  Google Scholar 

  26. Verhaegent M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74(4378)

    Google Scholar 

  27. Gabius H-J, André S, Jimenez-Barbero J, Romeo A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298

    Article  CAS  Google Scholar 

  28. Krishnamoorthy L, Mahal LK (2009) Glycomic analysis: an array of technologies. ACS Chem Biol 4:715

    Article  CAS  Google Scholar 

  29. Yabe R, Suzuki R, Kuno A, Fujimoto Z, Jigami Y, Hirabayashi J (2007) Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry. J Biochem 141:389

    Article  CAS  Google Scholar 

  30. Taira H, Matsushita Y, Kojima K, Shiraga K, Hohsaka T (2008) Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system. Biochem Biophys Res Commun 374:304

    Article  CAS  Google Scholar 

  31. Ito Y, Hohsaka T (2013) Incorporation of fluorescent nonnatural amino acid into sialic acid-binding lectin for fluorescence detection of ligand-binding. Bull Chem Soc Jpn 86:729

    Article  CAS  Google Scholar 

  32. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851

    Article  CAS  Google Scholar 

  33. Ueda H et al (1996) Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat Biotechnol 14:1714

    Article  CAS  Google Scholar 

  34. Abe R, Ohashi H, Iijima I, Ihara M, Takagi H, Hohsaka T, Ueda H (2011) “Quenchbodies”: quench-based antibody probes that show antigen-dependent fluorescence. J Am Chem Soc 133:17386

    Article  CAS  Google Scholar 

  35. Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128:8738

    Article  CAS  Google Scholar 

  36. Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 103:9785

    Article  CAS  Google Scholar 

  37. Speight LC, Muthusamy AK, Goldberg JM, Warner JB, Wissner RF, Willi TS, Woodman BF, Mehl RA, Petersson EJ (2013) Efficient synthesis and in vivo incorporation of acridonylalanine, a fluorescent amino acid for lifetime and Förster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 135:18806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author deeply appreciates the contributions of all the coworkers in this research project. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas (20107005) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Hohsaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hohsaka, T. (2016). Site-Specific Incorporation of Fluorescent Nonnatural Amino Acids into Proteins and Its Application to Fluorescence Analysis of Proteins. In: Terazima, M., Kataoka, M., Ueoka, R., Okamoto, Y. (eds) Molecular Science of Fluctuations Toward Biological Functions . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55840-8_5

Download citation

Publish with us

Policies and ethics