Skip to main content

NMR Explorations of Biomolecular Systems with Rapid Conformational Exchanges

  • Chapter
  • First Online:
Molecular Science of Fluctuations Toward Biological Functions

Abstract

Biomolecules such as proteins and oligosaccharides undergo dynamic conformational exchanges, which are relevant to regulation of biologically functional processes as typified by molecular recognition. Nuclear magnetic resonance (NMR) spectroscopy provides useful approaches to characterize the conformational dynamics of biomolecules over a broad range of time scales. However, detailed characterizations of individual conformers are inherently challenging for those biomolecules that exhibit rapid conformational interconversions. Here we describe several NMR strategies to deal with dynamic conformational equilibria and ensembles using monomeric and dimeric ubiquitin (Ub) and the oligosaccharide moieties of gangliosides as model molecules. A specific Ub conformer could be enriched using high pressure combined with a single amino acid substitution. Introducing a covalent linkage constrained the conformational states of a Ub dimer. NMR spectroscopy was also useful for validating molecular dynamics simulations of highly flexible oligosaccharides. These methods provided for detailed determinations of dynamic conformational exchanges that involve minor conformational species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  CAS  Google Scholar 

  2. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, Becker S et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  CAS  Google Scholar 

  3. Mittag T, Kay LE, Forman-Kay JD (2010) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 23:105–116

    CAS  Google Scholar 

  4. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  Google Scholar 

  5. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  CAS  Google Scholar 

  6. Mittermaier AK, Kay LE (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34:601–611

    Article  CAS  Google Scholar 

  7. Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  CAS  Google Scholar 

  8. Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr−Purcell−Meiboom−Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  CAS  Google Scholar 

  9. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  Google Scholar 

  10. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  11. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  12. Gekko K, Hasegawa Y (1986) Compressibility-structure relationship of globular proteins. Biochemistry 25:6563–6571

    Article  CAS  Google Scholar 

  13. Chalikian TV, Breslauer KJ (1998) Thermodynamic analysis of biomolecules: a volumetric approach. Curr Opin Struct Biol 8:657–664

    Article  CAS  Google Scholar 

  14. Akasaka K (2003) Highly fluctuating protein structures revealed by variable-pressure nuclear magnetic resonance. Biochemistry 42:10875–10885

    Article  CAS  Google Scholar 

  15. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  Google Scholar 

  16. Kitahara R, Yamada H, Akasaka K (2001) Two folded conformers of ubiquitin revealed by high-pressure NMR. Biochemistry 40:13556–13563

    Article  CAS  Google Scholar 

  17. Kitahara R, Akasaka K (2003) Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. Proc Natl Acad Sci U S A 100:3167–3172

    Article  CAS  Google Scholar 

  18. Kitahara R, Yokoyama S, Akasaka K (2005) NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 347:277–285

    Article  CAS  Google Scholar 

  19. Fu Y, Wand AJ (2013) Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure. J Biomol NMR 56:353–357

    Article  CAS  Google Scholar 

  20. Imai T, Sugita Y (2010) Dynamic correlation between pressure-induced protein structural transition and water penetration. J Phys Chem B 114:2281–2286

    Article  CAS  Google Scholar 

  21. Kitazawa S, Kameda T, Yagi-Utsumi M, Sugase K, Baxter NJ, Kato K et al (2013) Solution structure of the Q41N variant of ubiquitin as a model for the alternatively folded N2 state of ubiquitin. Biochemistry 52:1874–1885

    Article  CAS  Google Scholar 

  22. Kitazawa S, Kameda T, Kumo A, Yagi-Utsumi M, Baxter NJ, Kato K et al (2014) Close identity between alternatively folded state N2 of ubiquitin and the conformation of the protein bound to the ubiquitin-activating enzyme. Biochemistry 53:447–449

    Article  CAS  Google Scholar 

  23. Kitahara R, Yamaguchi Y, Sakata E, Kasuya T, Tanaka K, Kato K et al (2006) Evolutionally conserved intermediates between ubiquitin and NEDD8. J Mol Biol 363:395–404

    Article  CAS  Google Scholar 

  24. Hirano T, Serve O, Yagi-Utsumi M, Takemoto E, Hiromoto T, Satoh T et al (2011) Conformational dynamics of wild-type Lys-48-linked diubiquitin in solution. J Biol Chem 286:37496–37502

    Article  CAS  Google Scholar 

  25. Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM (1992) Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 267:16467–16471

    CAS  Google Scholar 

  26. Varadan R, Assfalg M, Raasi S, Pickart C, Fushman D (2005) Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol Cell 18:687–698

    Article  CAS  Google Scholar 

  27. Zhang N, Wang Q, Ehlinger A, Randles L, Lary JW, Kang Y et al (2009) Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol Cell 35:280–290

    Article  Google Scholar 

  28. Yao T, Cohen RE (2000) Cyclization of polyubiquitin by the E2-25K ubiquitin conjugating enzyme. J Biol Chem 275:36862–36868

    Article  CAS  Google Scholar 

  29. Sokratous K, Strachan J, Roach LV, Layfield R, Oldham NJ (2012) Cyclisation of Lys48-linked diubiquitin in vitro and in vivo. FEBS Lett 586:4144–4147

    Article  CAS  Google Scholar 

  30. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    Article  CAS  Google Scholar 

  31. Gabius HJ, Andre S, Jimenez-Barbero J, Romero A, Solis D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  Google Scholar 

  32. Kamiya Y, Yagi-Utsumi M, Yagi H, Kato K (2011) Structural and molecular basis of carbohydrate-protein interaction systems as potential therapeutic targets. Curr Pharm Des 17:1672–1684

    Article  CAS  Google Scholar 

  33. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  CAS  Google Scholar 

  34. Kamiya Y, Satoh T, Kato K (2012) Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 1820:1327–1337

    Article  CAS  Google Scholar 

  35. Kato K, Kamiya Y (2007) Structural views of glycoprotein-fate determination in cells. Glycobiology 17:1031–1044

    Article  CAS  Google Scholar 

  36. Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Article  CAS  Google Scholar 

  37. Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557

    Article  CAS  Google Scholar 

  38. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease – a review. J Lipid Res 49:1157–1175

    Article  CAS  Google Scholar 

  39. Matsuzaki K, Kato K, Yanagisawa K (2010) Abeta polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801:868–877

    Article  CAS  Google Scholar 

  40. Fadda E, Woods RJ (2010) Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15:596–609

    Article  CAS  Google Scholar 

  41. Re S, Nishima W, Miyashita N, Sugita Y (2012) Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev 4:179–187

    Article  CAS  Google Scholar 

  42. Zhang Y, Yamaguchi T, Kato K (2013) New NMR tools for characterizing the dynamic conformations and interactions of oligosaccharides. Chem Lett 42:1455–1462

    Article  CAS  Google Scholar 

  43. Rodriguez-Castaneda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44 Spec No:S10–S6

    Google Scholar 

  44. Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 3782–3790

    Google Scholar 

  45. Otting G (2010) Protein NMR, using paramagnetic ions. Annu Rev Biophys 39:387–405

    Article  CAS  Google Scholar 

  46. Yamamoto S, Zhang Y, Yamaguchi T, Kameda T, Kato K (2012) Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun (Camb) 48:4752–4754

    Article  CAS  Google Scholar 

  47. Zhang Y, Yamamoto S, Yamaguchi T, Kato K (2012) Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules 17:6658–6671

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the JSPS/MEXT Grants in Aid for Scientific Research on Innovation Areas (23107729, 20107004, and 25102008), Young Scientists (B) (25840025 and 24750170), and Challenging Exploratory Research (26560451) and by the Okazaki ORION project. M. Y. U. is a recipient of the Naito Foundation Grant for Studying Overseas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yagi-Utsumi, M., Yamaguchi, T., Kitahara, R., Kato, K. (2016). NMR Explorations of Biomolecular Systems with Rapid Conformational Exchanges. In: Terazima, M., Kataoka, M., Ueoka, R., Okamoto, Y. (eds) Molecular Science of Fluctuations Toward Biological Functions . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55840-8_4

Download citation

Publish with us

Policies and ethics