Skip to main content

Enhancement of Hemocompatibility

  • Chapter
  • First Online:
Mechanism of Artificial Heart

Abstract

Blood cell/protein damage and blood coagulation should be avoided in medical devices in design and in clinical use. Typical issues are hemolysis, thrombosis, and von Willebrand syndrome. Their mechanism of generation and the corresponding evaluation methods are also described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hashimoto, S.: Erythrocyte destruction under periodically fluctuating shear rate: comparative study with constant shear rate. J. Artif. Organs 13(5), 458–463 (1989). Blackwell

    Article  Google Scholar 

  2. Giersiepen, M., Wurzinger, L.J., Opitz, R., Reul, H.: Estimation of shear stress-related blood damaga in heart valve prostheses-in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5), 300–306 (1990)

    Google Scholar 

  3. Nishida, M., Yamane, T., Masuzawa, T., Tsukiya, T., Taenaka, Y., Tsukamoto, Y., Ito, K., Konishi, Y.: Flow visualization study to obtain suitable design criteria of a centrifugal blood pump. J. Congest. Heart Fail. Circulat. Support 1(4), 311–315 (2001)

    Google Scholar 

  4. Nevaril, C.G., Hellums, J.D., Alfrey Jr., C.P., Lynch, E.C.: Physical effects in red blood cell trauma. A.I.Ch.E. J. 15, 707 (1969)

    Article  Google Scholar 

  5. Schima, H., Wieselthaler, G., Schwendenwein, I., Losert, U., Wolner, E.: A review and assessment of investigative methods for mechanically induced blood trauma: special aspects in rotary blood pumps. Heart Replace Artif. Heart 6, 361–367 (1998)

    Article  Google Scholar 

  6. ISO 10993–4 Biological evaluation of medical devices — Part 4: Selection of tests for interactions with blood

    Google Scholar 

  7. Toyoda, M., Nishida, M., Maruyama, O., Yamane, T., Tsutsui, T., Sankai, Y.: Geometric optimization for non-thrombogenicity of a centrifugal blood pump through flow visualization. JSME Int. J. C 45(4), 1013–1019 (2002)

    Article  Google Scholar 

  8. Yamane, T., Maruyama, O., Nishida, M., Toyoda, M., Tsutsui, T., Jikuya, T., Shigeta, O., Sankai, Y.: The most profitable use of flow visualization in the elimination of thrombus from a monopivot magnetic suspension blood pump. J. Artif Organs 28(4), 390–397 (2004). Blackwell

    Article  Google Scholar 

  9. Crow, S., Chen, D., Milano, C., Thomas, W., Joyce, L., Piacentino III, V., Sharma, R., Wu, J., Arepally, G., Bowles, D., Rogers, J., Villamizar-Ortiz, N.: Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann. Thorac. Surg. 90, 1263–1269 (2010)

    Article  Google Scholar 

  10. ASTM F-1830-97, Standard practice for selection of blood for in-vitro evaluation of blood pumps (1997)

    Google Scholar 

  11. ASTM F1841-97, Standard practice for Assessment of hemolysis in continuous flow blood pumps (1997)

    Google Scholar 

  12. ISO/CD 18242, Cardiovascular implants and extracorporeal systems — Centrifugal blood pumps

    Google Scholar 

  13. ISO 10993–4, Biological evaluation of medical devices — Part 4: Selection of tests for interactions with blood, 2013-01-10

    Google Scholar 

  14. Maruyama, O., Tomari, Y., Sugiyama, D., Nishida, M., Tsustui, T., Yamane, T.: Simple in vitro testing method for antithrombogenic evaluation of centrifugal blood pumps. ASAIO J. 55(4), 314–322 (2009)

    Article  Google Scholar 

  15. ISO 14708–5, Implants for surgery — Active implantable medical devices — Part 5: Circulatory support devices, 2010-02-01

    Google Scholar 

  16. Thrall, M.A., Weiser, G., Allison, R.W., Campbell, T.W.: Veterinary Hematology and Clinical Chemistry, 2nd edn. Wiley-Blackwell, Somerset (2012)

    Google Scholar 

  17. Tanaka, H., Tsukiya, T., Tatsumi, E., Mizuno, T., Hidaka, T., Okubo, T., Osada, T., Miyamoto, S., Taenaka, Y.: Initial in vivo evaluation of the newly developed axial flow turbo pump with hydrodynamic bearings. J. Artif. Organs 14(1), 31–38 (2011). Springer

    Article  Google Scholar 

  18. Yamane, T., Kosaka, R., Nishida, M., Maruyama, O., Yamamoto, Y., Kuwana, K., Kawamura, H., Shiraishi, Y., Yambe, T., Sankai, Y., Tsutsui, T.: Enhancement of hemocompatibility of the MERA monopivot centrifugal pump: toward medium-term use. J. Artif. Organs 37(2), 217–225 (2013). Wiley-Blackwell

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamane, T. (2016). Enhancement of Hemocompatibility. In: Mechanism of Artificial Heart. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55831-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55831-6_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55829-3

  • Online ISBN: 978-4-431-55831-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics