Skip to main content

Transglutaminase 2-Mediated Gene Regulation

  • Chapter
  • First Online:
Book cover Transglutaminases

Abstract

Two decades ago, transglutaminase 2 (TG2) was considered as an end of cellular signaling, such as in the case of factor XIIIa as the last step in the blood clotting cascade. Recently we have observed that TG2 cross-linking activity can change the gene expression through transcription factor activation via suppressor regulation. Many recent studies have elucidated a clearer picture of TG2 working on gene regulation under various cellular stresses. The stress-inducible nature of TG2 has helped to provide a deeper insight into the stress-related functions of TG2, providing contrast with its role under a resting/normal state. This chapter focuses on the molecular mechanisms related to TG2-mediated gene regulation under various stresses including inflammation, sepsis, and cancer, all of which are recognized as TG2-associated biological states in the field today. Under these conditions, it can be shown that TG2 directly commands gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108(12):4852–4857. doi:10.1073/pnas.1017667108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergamini CM, Griffin M, Pansini FS (2005) Transglutaminase and vascular biology: physiopathologic implications and perspectives for therapeutic interventions. Curr Med Chem 12(20):2357–2372

    Article  CAS  PubMed  Google Scholar 

  • Boroughs LK, Antonyak MA, Cerione RA (2014) A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival. J Biol Chem 289(14):10115–10125. doi:10.1074/jbc.M113.464693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown KD (2013) Transglutaminase 2 and NF-kappaB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 137(2):329–336. doi:10.1007/s10549-012-2351-7

    Article  CAS  PubMed  Google Scholar 

  • Budillon A, Carbone C, Di Gennaro E (2013) Tissue transglutaminase: a new target to reverse cancer drug resistance. Amino Acids 44(1):63–72. doi:10.1007/s00726-011-1167-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caccamo D, Campisi A, Curro M, Aguennouz M, Li Volti G, Avola R, Ientile R (2005) Nuclear factor-kappab activation is associated with glutamate-evoked tissue transglutaminase up-regulation in primary astrocyte cultures. J Neurosci Res 82(6):858–865. doi:10.1002/jnr.20683

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49. doi:10.1038/nature12222

    Article  Google Scholar 

  • Choi YC, Kim TS, Kim SY (2004) Increase in transglutaminase 2 in idiopathic inflammatory myopathies. Eur Neurol 51(1):10–14. doi:10.1159/000074911

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475. doi:10.1016/j.chembiol.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  • Chung SI, Folk JE (1970) Mechanism of the inactivation of guinea pig liver transglutaminase by tetrathionate. J Biol Chem 245(4):681–689

    CAS  PubMed  Google Scholar 

  • Chung SI, Shrager RI, Folk JE (1970) Mechanism of action of guinea pig liver transglutaminase. VII Chemical and stereochemical aspects of substrate binding and catalysis. J Biol Chem 245(23):6424–6435

    CAS  PubMed  Google Scholar 

  • Coluccia AM, Benati D, Dekhil H, De Filippo A, Lan C, Gambacorti-Passerini C (2006) SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp 60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res 66(4):2279–2286. doi:10.1158/0008-5472.CAN-05-2057

    Article  CAS  PubMed  Google Scholar 

  • Condello S, Cao L, Matei D (2013) Tissue transglutaminase regulates beta-catenin signaling through a c-Src-dependent mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 27(8):3100–3112. doi:10.1096/fj.12-222620

    CAS  Google Scholar 

  • Crawford LJ, Irvine AE (2013) Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev 27(6):297–304. doi:10.1016/j.blre.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21(1):148–155. doi:10.1128/MCB.21.1.148-155.2001

    Article  PubMed Central  PubMed  Google Scholar 

  • Deasey S, Nurminsky D, Shanmugasundaram S, Lima F, Nurminskaya M (2013) Transglutaminase 2 as a novel activator of LRP6/beta-catenin signaling. Cell Signal 25(12):2646–2651. doi:10.1016/j.cellsig.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  • D’Eletto M, Farrace MG, Falasca L, Reali V, Oliverio S, Melino G, Griffin M, Fimia GM, Piacentini M (2009) Transglutaminase 2 is involved in autophagosome maturation. Autophagy 5(8):1145–1154

    Article  PubMed  Google Scholar 

  • Dzhambazov B, Lindh I, Engstrom A, Holmdahl R (2009) Tissue transglutaminase enhances collagen type II-induced arthritis and modifies the immunodominant T-cell epitope CII260-270. Eur J Immunol 39(9):2412–2423. doi:10.1002/eji.200939438

    Article  CAS  PubMed  Google Scholar 

  • Falasca L, Iadevaia V, Ciccosanti F, Melino G, Serafino A, Piacentini M (2005) Transglutaminase type II is a key element in the regulation of the anti-inflammatory response elicited by apoptotic cell engulfment. J Immunol 174(11):7330–7340

    Article  CAS  PubMed  Google Scholar 

  • Faverman L, Mikhaylova L, Malmquist J, Nurminskaya M (2008) Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett 582(10):1552–1557. doi:10.1016/j.febslet.2008.03.053

    Article  CAS  PubMed  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531. doi:10.1146/annurev.bi.49.070180.002505

    Article  CAS  PubMed  Google Scholar 

  • Folk JE, Chung SI (1973) Molecular and catalytic properties of transglutaminases. Adv Enzymol Relat Areas Mol Biol 38:109–191

    CAS  PubMed  Google Scholar 

  • Haddox MK, Russell DH (1981) Increased nuclear conjugated polyamines and transglutaminase during liver regeneration. Proc Natl Acad Sci U S A 78(3):1712–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hallstrand TS, Wurfel MM, Lai Y, Ni Z, Gelb MH, Altemeier WA, Beyer RP, Aitken ML, Henderson WR (2010) Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes. PLoS One 5(1):e8583. doi:10.1371/journal.pone.0008583

    Article  PubMed Central  PubMed  Google Scholar 

  • Han JA, Park SC (1999) Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol 125(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, Fuse M, Nakagawa M, Enokida H (2012) Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget 3(1):44–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong GU, Park BS, Park JW, Kim SY, Ro JY (2013) IgE production in CD40/CD40L cross-talk of B and mast cells and mediator release via TGase 2 in mouse allergic asthma. Cell Signal 25(6):1514–1525. doi:10.1016/j.cellsig.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023. doi:10.1152/physrev.00044.2008

    Article  CAS  PubMed  Google Scholar 

  • Ikura K, Shinagawa R, Suto N, Sasaki R (1994) Increase caused by interleukin-6 in promoter activity of guinea pig liver transglutaminase gene. Biosci Biotechnol Biochem 58(8):1540–1541

    Article  CAS  PubMed  Google Scholar 

  • Jang GY, Jeon JH, Cho SY, Shin DM, Kim CW, Jeong EM, Bae HC, Kim TW, Lee SH, Choi Y, Lee DS, Park SC, Kim IG (2010) Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene 29(3):356–367. doi:10.1038/onc.2009.342

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. doi:10.1038/nri1703

    Article  CAS  PubMed  Google Scholar 

  • Kawabata S (2010) Immunocompetent molecules and their response network in horseshoe crabs. Adv Exp Med Biol 708:122–136

    Article  CAS  PubMed  Google Scholar 

  • Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci J Virtual Library 11:3026–3035

    Article  CAS  Google Scholar 

  • Kim SY (2011) Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. Adv Enzymol Relat Areas Mol Biol 78:161–195

    CAS  PubMed  Google Scholar 

  • Kim JM, Voll RE, Ko C, Kim DS, Park KS, Kim SY (2008) A new regulatory mechanism of NF-kappaB activation by I-kappaBbeta in cancer cells. J Mol Biol 384(4):756–765. doi:10.1016/j.jmb.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Han BG, Park KS, Lee BI, Kim SY, Bae CD (2010a) I-kappaBalpha depletion by transglutaminase 2 and mu-calpain occurs in parallel with the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 399(2):300–306. doi:10.1016/j.bbrc.2010.07.078

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Kim B, Tahk H, Kim DH, Ahn ER, Choi C, Jeon Y, Park SY, Lee H, Oh SH, Kim SY (2010b) Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-kappaB activation. Biochem Biophys Res Commun 403(3–4):479–484. doi:10.1016/j.bbrc.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Choi YB, Han BG, Park SY, Jeon Y, Kim DH, Ahn ER, Shin JE, Lee BI, Lee H, Hong KM, Kim SY (2011) Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking. Oncogene 30(48):4780–4790. doi:10.1038/onc.2011.183

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kim KH, Ahn ER, Yoo BC, Kim SY (2013) Depletion of cathepsin D by transglutaminase 2 through protein cross-linking promotes cell survival. Amino Acids 44(1):73–80. doi:10.1007/s00726-011-1089-6

    Article  CAS  PubMed  Google Scholar 

  • Ku BM, Kim DS, Kim KH, Yoo BC, Kim SH, Gong YD, Kim SY (2013) Transglutaminase 2 inhibition found to induce p53 mediated apoptosis in renal cell carcinoma. FASEB J Off Publ Fed Am Soc Exp Biol 27(9):3487–3495. doi:10.1096/fj.12-224220

    CAS  Google Scholar 

  • Ku BM, Kim SJ, Kim N, Hong D, Choi YB, Lee SH, Gong YD, Kim SY (2014) Transglutaminase 2 inhibitor abrogates renal cell carcinoma in xenograft models. J Cancer Res Clin Oncol 140(5):757–767. doi:10.1007/s00432-014-1623-5

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Xu J, Sung B, Kumar S, Yu D, Aggarwal BB, Mehta K (2012) Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells. Breast Cancer Res BCR 14(1):R4. doi:10.1186/bcr3085

    Article  CAS  PubMed  Google Scholar 

  • Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Nagy L, Thomazy V, Davies PJ, Zern MA (1998) TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol 274(2 Pt 1):G240–245. http://www.ncbi.nlm.nih.gov/pubmed/9486175

  • Laki K, Lorand L (1948) On the solubility of fibrin clots. Science 108(2802):280. doi:10.1126/science.108.2802.280

    Article  CAS  PubMed  Google Scholar 

  • Lauzier A, Charbonneau M, Paquette M, Harper K, Dubois CM (2012) Transglutaminase 2 cross-linking activity is linked to invadopodia formation and cartilage breakdown in arthritis. Arthritis Res Ther 14(4):R159. doi:10.1186/ar3899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279(51):53725–53735. doi:10.1074/jbc.M407627200

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim N, Kim SJ, Song J, Gong YD, Kim SY (2013) Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor. J Cancer Res Clin Oncol 139(8):1279–1294. doi:10.1007/s00432-013-1433-1

    Article  CAS  PubMed  Google Scholar 

  • Lentini A, Abbruzzese A, Provenzano B, Tabolacci C, Beninati S (2013) Transglutaminases: key regulators of cancer metastasis. Amino Acids 44(1):25–32. doi:10.1007/s00726-012-1229-7

    Article  CAS  PubMed  Google Scholar 

  • Li B, Cerione RA, Antonyak M (2011) Tissue transglutaminase and its role in human cancer progression. Adv Enzymol Relat Areas Mol Biol 78:247–293

    CAS  PubMed  Google Scholar 

  • Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. doi:10.1038/ncb2090

    Article  CAS  PubMed  Google Scholar 

  • Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina DL, Settembre C, Gavina M, Raia V, Ballabio A, Maiuri L (2011) Cystic fibrosis: a disorder with defective autophagy. Autophagy 7(1):104–106

    Article  PubMed  Google Scholar 

  • Macaione V, Aguennouz M, Mazzeo A, De Pasquale MG, Russo M, Toscano A, De Luca G, Di Giorgio RM, Vita G, Rodolico C (2008) Expression of transglutaminase 2 does not differentiate focal myositis from generalized inflammatory myopathies. Acta Neurol Scand 117(6):393–398. doi:10.1111/j.1600-0404.2007.00957.x

    Article  CAS  PubMed  Google Scholar 

  • Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quaratino S (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180(11):7697–7705

    Article  CAS  PubMed  Google Scholar 

  • Marktel S, Marin D, Foot N, Szydlo R, Bua M, Karadimitris A, De Melo VA, Kotzampaltiris P, Dazzi F, Rahemtulla A, Olavarria E, Apperley JF, Goldman JM (2003) Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica 88(3):260–267

    CAS  PubMed  Google Scholar 

  • Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin KE, Sjostrom H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Moore WT Jr, Murtaugh MP, Davies PJ (1984) Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages. J Biol Chem 259(20):12794–12802

    CAS  PubMed  Google Scholar 

  • Mosimann C, Hausmann G, Basler K (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10(4):276–286. doi:10.1038/nrm2654

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Saydak M, Shipley N, Lu S, Basilion JP, Yan ZH, Syka P, Chandraratna RA, Stein JP, Heyman RA, Davies PJ (1996) Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J Biol Chem 271(8):4355–4365

    Article  CAS  PubMed  Google Scholar 

  • Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276(23):20673–20678. doi:10.1074/jbc.M010846200

    Article  CAS  PubMed  Google Scholar 

  • Nardacci R, Lo Iacono O, Ciccosanti F, Falasca L, Addesso M, Amendola A, Antonucci G, Craxi A, Fimia GM, Iadevaia V, Melino G, Ruco L, Tocci G, Ippolito G, Piacentini M (2003) Transglutaminase type II plays a protective role in hepatic injury. Am J Pathol 162(4):1293–1303. doi:10.1016/S0002-9440(10)63925-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh K, Ko E, Kim HS, Park AK, Moon HG, Noh DY, Lee DS (2011a) Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res BCR 13(5):R96. doi:10.1186/bcr3034

    Article  CAS  PubMed  Google Scholar 

  • Oh K, Park HB, Byoun OJ, Shin DM, Jeong EM, Kim YW, Kim YS, Melino G, Kim IG, Lee DS (2011b) Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. J Exp Med 208(8):1707–1719. doi:10.1084/jem.20101457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park KC, Chung KC, Kim YS, Lee J, Joh TH, Kim SY (2004) Transglutaminase 2 induces nitric oxide synthesis in BV-2 microglia. Biochem Biophys Res Commun 323(3):1055–1062. doi:10.1016/j.bbrc.2004.08.204

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Kim JM, Kim DS, Kim IH, Kim SY (2006) Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J Biol Chem 281(46):34965–34972. doi:10.1074/jbc.M604150200

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Kim DS, Ko C, Lee SJ, Oh SH, Kim SY (2011) TNF-alpha mediated NF-kappaB activation is constantly extended by transglutaminase 2. Front Biosci (Elite Ed) 3:341–354

    Article  Google Scholar 

  • Piacentini M, D’Eletto M, Falasca L, Farrace MG, Rodolfo C (2011) Transglutaminase 2 at the crossroads between cell death and survival. Adv Enzymol Relat Areas Mol Biol 78:197–246

    CAS  PubMed  Google Scholar 

  • Rebe C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessede G, Athias A, Steinmetz E, Lobaccaro JM, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105(4):393–401. doi:10.1161/CIRCRESAHA.109.201855

    Article  CAS  PubMed  Google Scholar 

  • Schroff G, Neumann C, Sorg C (1981) Transglutaminase as a marker for subsets of murine macrophages. Eur J Immunol 11(8):637–642. doi:10.1002/eji.1830110809

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  • Shweke N, Boulos N, Jouanneau C, Vandermeersch S, Melino G, Dussaule JC, Chatziantoniou C, Ronco P, Boffa JJ (2008) Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol 173(3):631–642. doi:10.2353/ajpath.2008.080025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY (2003) Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Invest 111(1):121–128. doi:10.1172/JCI15937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tacke F, Luedde T, Trautwein C (2009) Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 36(1):4–12. doi:10.1007/s12016-008-8091-0

    Article  CAS  PubMed  Google Scholar 

  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407(6803):530–535. doi:10.1038/35035117

    Article  CAS  PubMed  Google Scholar 

  • Tatsukawa H, Fukaya Y, Frampton G, Martinez-Fuentes A, Suzuki K, Kuo TF, Nagatsuma K, Shimokado K, Okuno M, Wu J, Iismaa S, Matsuura T, Tsukamoto H, Zern MA, Graham RM, Kojima S (2009) Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 136(5):1783–1795 e1710. doi:10.1053/j.gastro.2009.01.007

  • Tucholski J (2010) TG2 protects neuroblastoma cells against DNA-damage-induced stress, suppresses p53 activation. Amino Acids 39(2):523–532. doi:10.1007/s00726-009-0468-8

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, Loseva O, Morgelin M, Ikle J, Cripps RM, Herwald H, Theopold U (2010) Pathogen entrapment by transglutaminase – a conserved early innate immune mechanism. PLoS Pathog 6(2):e1000763. doi:10.1371/journal.ppat.1000763

    Article  PubMed Central  PubMed  Google Scholar 

  • Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2000) Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 19(54):6297–6305. doi:10.1038/sj.onc.1204012

    Article  CAS  PubMed  Google Scholar 

  • Xu-Monette ZY, Moller MB, Tzankov A, Montes-Moreno S, Hu W, Manyam GC, Kristensen L, Fan L, Visco C, Dybkaer K, Chiu A, Tam W, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WW, van Krieken JH, Huang Q, Huh J, Ai W, Ponzoni M, Ferreri AJ, Wu L, Zhao X, Bueso-Ramos CE, Wang SA, Go RS, Li Y, Winter JN, Piris MA, Medeiros LJ, Young KH (2013) MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 122(15):2630–2640. doi:10.1182/blood-2012-12-473702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG (2006) Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol 26(2):569–579. doi:10.1128/MCB.26.2.569-579.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo H, Ahn ER, Kim SJ, Lee SH, Oh SH, Kim SY (2013) Divergent results induced by different types of septic shock in transglutaminase 2 knockout mice. Amino Acids 44(1):189–197. doi:10.1007/s00726-012-1412-x

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, Piwnica-Worms D, Rich KM (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26(18):2563–2573. doi:10.1038/sj.onc.1210048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the National Cancer Center of Korea (NCC1410280-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Youl Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kim, SY. (2015). Transglutaminase 2-Mediated Gene Regulation. In: Hitomi, K., Kojima, S., Fesus, L. (eds) Transglutaminases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55825-5_7

Download citation

Publish with us

Policies and ethics