Skip to main content

Preferred Substrate Structure of Transglutaminases

  • Chapter
  • First Online:
Transglutaminases

Abstract

By catalytic reactions, transglutaminases (TGase) modify structure, functions and localizations of proteins. Identification of specific substrate proteins and analyses on the reaction products is the first step in clarifying the physiological significance of cross-linking and transamidation reactions. To date, in in vitro and in vivo analyses, a number of proteins have been identified as possible substrates by several methods. Additionally, each isozyme in the enzyme family has its specific preference for its recognition of the substrate proteins. During these investigations, structural properties and interaction with the enzyme appeared specific and the elegant mechanisms have been characterized.

In the first part of this chapter, we will describe the basic knowledge regarding the mechanism of substrate enzyme reactions, substrates for major isozymes, and substrate sequences available for several experiments. In the second part of this chapter, our recent studies will be introduced, discussing identification of highly reactive substrate peptides on each isozyme from a random peptide library, applications for detection of activity, and identification of substrate candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdAlla S, Lother H, Langer A, el-Faramawy Y, Quitterer U (2004) Factor XIIIA crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell 119:343–354

    Article  CAS  PubMed  Google Scholar 

  • Berbers GA, Feenstra RW, van den Bos R, Hoekman WA, Bloemendal H, de Jong WW (1984) Lens transglutaminase selects specific beta-crystalline sequences as substrate. Proc Natl Acad Sci U S A 81:7017–7020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Candi E, Melino G, Mei G, Tarcsa E, Chung SI, Marekov LN, Steinert PM (1995) Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J Biol Chem 270:26382–26390

    Article  CAS  PubMed  Google Scholar 

  • Candi E, Tarcsa E, Idler WW, Kartasova T, Marekov LN, Steinert PM (1999) Transglutaminase cross-linking properties of the small proline-rich 1 family of cornified cell envelope proteins. Integration with loricrin. J Biol Chem 274:7226–7237

    Article  CAS  PubMed  Google Scholar 

  • Candi E, Schmidt R, Melino G (2005) The cornified envelop: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340

    Article  CAS  PubMed  Google Scholar 

  • Caporale A, Selis F, Sandomenico A, Jotti GS, Tonon G, Ruvo M (2015) The LQSP tetrapeptide is a new highly efficient substrate of microbial transglutaminase for the site-specific derivatization of peptides and proteins. Biotechnol J 10:154–161

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Zachariae ED, Scavenius C, Thybo M, Callesen MM, Kløverpris S, Oxvig C, Enghild JJ, Sørensen ES (2014) Identification of transglutaminase reactive residues in human osteopontin and their role in polymerization. PLoS One 9:e113650

    Article  PubMed Central  PubMed  Google Scholar 

  • Cleary DB, Maurer MC (2006) Characterizing the specificity of activated Factor XIII for glutamine-containing substrate peptides. Biochim Biophys Acta 1764:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Csosz E, Mesko B, Fesus L (2009) Transdabwiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36:615–617

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson CS, Boros S, Hjernoe K, Boelens WC, Hojrup P (2005) Screening for transglutaminase-catalyzed modifications by peptide mass finger printing using multipoint recalibration on recognized peaks for high mass accuracy. J Biomol Tech 16:197–208

    PubMed Central  PubMed  Google Scholar 

  • Fischer J, Koblyakova Y, Latendorf T, Wu Z, Meyer-Hoffert U (2013) Cross-linking of SPINK6 by transglutaminases protects from epidermal proteases. J Invest Dermatol 133:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein B, Molberg Ø, Qiao SW, Schmid DG, von der Mulbe F, Elgstoen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. J Biol Chem 277:34109–34116

    Article  CAS  PubMed  Google Scholar 

  • Fukui M, Kuramoto K, Yamasaki R, Shimizu Y, Itoh M, Kawamoto T, Hitomi K (2013) Identification of a highly reactive peptide for TG6: detection of its transglutaminase activity in the skin epidermis using the peptide. FEBS J 280:1420–1429

    Article  CAS  PubMed  Google Scholar 

  • Gorman JJ, Folk JE (1984) Structural features of glutamine substrates for transglutaminases. Role of extended interactions in the specificity of human plasma Factor XIIIa and of the guinea pig liver enzyme. J Biol Chem 259:9007–9010

    CAS  PubMed  Google Scholar 

  • Groenen PJ, Bloemendal H, de Jong WW (1992) The carboxy-terminal lysine αB-crystalline is an amine donor substrate for tissue transglutaminase. Eur J Biochem 205:671–674

    Article  CAS  PubMed  Google Scholar 

  • Groenen PJ, Seccia M, Smulders RH, Gravela E, Cheeseman KH, Bloemendal H, de Jong WW (1993) Exposure of beta H-crystallin to hydroxyl radicals enhances the transglutaminase-susceptibility of its existing amine-donor and amine-acceptor sites. Biochem J 295:399–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hitomi K, Kitamura M, Perez-Alea M, Ismail C, Thomas V, El-Alaoui S (2009) A specific colorimetric assay for measuring of transglutaminase 1 and Factor XIII activities. Anal Biochem 394:281–283

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann BR, Annis D, Mosher DF (2011) Reactivity of the N-terminal region of fibronectin protein to transglutaminase 2 and FactorXIIIA. J Biol Chem 286:32220–32230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh M, Kawamoto T, Tatsukawa H, Kojima S, Yamanishi K, Hitomi K (2011) In situ detection of active transglutaminases for keratinocyte-type (TGase 1) and tissue-type (TGase 2) using fluorescence-labeled highly reactive substrate peptides. J Histochem Cytochem 59:180–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh M, Tatsukawa H, Lee E-S, Yamanishi K, Kojima S, Hitomi K (2013) Variations in both TG1 and TG2 isozyme-specific in situ activities and protein expressions during mouse embryonic development. J Histochem Cytochem 61:793–801

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwai K, Shibukawa Y, Yamazaki K, Wada Y (2014) Transglutaminase 2-dependent deamidation of glyceraldehyde-3-phosphate dehydrogenase promotes trophoblastic cell fusion. J Biol Chem 289:4989–4999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeon J-H, Choi K-H, Cho S-Y, Kim C-W, Shin D-M, Kwon J-C, Song K-Y, Park S-C, Kim I-G (2003) Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. EMBO J 22:5273–5282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143

    Article  PubMed  Google Scholar 

  • Keresztessy Z, Csosz E, Harsfalvi J, Csomos K, Gray J, Lightowlers RN, Lakey JH, Balajthy Z, Fesus L (2006) Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci 15:2466–2480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuramoto K, Yamasaki R, Shimizu Y, Tatsukawa H, Hitomi K (2013) Phage-displayed peptide library screening for preferred human substrate peptide sequences for transglutaminase 7. Arch Biophys Biochem 537:138–143

    Article  CAS  Google Scholar 

  • Lee JH, Song C, Kim DH, Park IH, Lee SG, Lee YS, Kim BG (2013) Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display. Biotechnol Bioeng 110:353–362

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Kim JM, Kim DS, Kim IH, Kim SY (2006) Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J Biol Chem 281:34965–34972

    Article  CAS  PubMed  Google Scholar 

  • Perez-Alea M, Kitamura M, Martin G, Thomas V, Hitomi K, El-Alaoui S (2009) Development of an isoenzyme-specific colorimetric assay for tissue transglutaminase 2 cross-linking activity. Anal Biochem 389:150–156

    Article  CAS  PubMed  Google Scholar 

  • Robinson NA, Eckert RL (1998) Identification of transglutaminase reactive residues in S100A11. J Biol Chem 273:2721–2728

    Article  CAS  PubMed  Google Scholar 

  • Robinson NA, Lapic S, Welter JF, Eckert RL (1997) S100A11, S10A10, annexin 1, desmosomal proteins, small proline-rich protein, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelop of cultured human epidermal keratinocytes. J Biol Chem 272:12035–12046

    Article  CAS  PubMed  Google Scholar 

  • Ruoppolo M, Orrù S, D’Amato A, Francese S, Rovero P, Marino G, Esposito C (2003) Analysis of transglutaminase protein substrates by functional proteomics. Protein Sci 12:1290–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruse M, Lambert A, Robinson N, Ryan D, Shon K-J, Eckert RL (2001) S100A7, S100A10, and S100A11 are transglutaminase substrates. Biochemistry 40:3167–3173

    Article  CAS  PubMed  Google Scholar 

  • Schalkwijk J, Wiedow O, Hirose S (1999) The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core. Biochem J 340:569–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sobel JH, Gawinowicz MA (1996) Identification of the α chain lysine donor sites involved in Factor XIIIa fibrin cross-linking. J Biol Chem 271:19288–19297

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2:647–655

    Article  CAS  PubMed  Google Scholar 

  • Stamnaes J, Dorum S, Fleckenstein B, Aeschlimann D, Sollid LM (2010) Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia. Amino Acids 39:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN (1997) Direct evidence that involucrin is a major early isopeptide cross-linked component of the keratinocyte cornified cell envelope. J Biol Chem 272:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Candi E, Tarcsa E, Marekov LN, Sette M, Paci M, Ciani B, Guerrieri P, Melino G (1999) Transglutaminase crosslinking and structural studies of the human small proline rich 3 protein. Cell Death Differ 6:916–930

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: Identification of peptide substrates for TGase 2 and Factor XIIIa. J Biol Chem 281:17699–17706

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Hosono M, Kitamura M, Tsuda T, Yamanishi K, Maki M, Hitomi K (2008a) Identification of preferred substrate sequences for transglutaminase 1: development of a novel peptide that can efficiently detect cross-linking enzyme activity in the skin. FEBS J 275:5667–5677

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Yokoyama K, Nio N, Maki M, Hitomi K (2008b) Identification of the preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch Biochem Biophys 477:379–383

    Article  CAS  PubMed  Google Scholar 

  • Tarcsa E, Candi E, Kartasova T, Idler WW, Marekov LN, Steinert PM (1998) Structural and transglutaminase substrate properties of the small proline-rich 2 family of cornified cell envelope proteins. J Biol Chem 273:23297–23303

    Article  CAS  PubMed  Google Scholar 

  • Tseng HC, Lin HJ, Tang JB, Gandhi PS, Chang WC, Chen YH (2009) Identification of the major TG4 cross-linking sites in the androgen-dependent SVS I exclusively expressed in mouse seminal vesicle. J Cell Biochem 107:899–907

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862

    Article  CAS  PubMed  Google Scholar 

  • Wang W (2011) Identification of respective lysine donor and glutamine acceptor sites involved in Factor XIIIa-catalyzed fibrin α chain cross-linking. J Biol Chem 286:44952–44964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Cui C, Hitomi K, Kaartinen MT (2014) Detyrosinated Glu-tubulin is a substrate for cellular Factor XIIIA transglutaminase in differentiating osteoblasts. Amino Acids 46:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tsunoda K, Itoh M, Fukui M, Mori H, Hitomi K (2013) Transglutaminase 2 and Factor XIII catalyze distinct substrates in differentiating osteoblastic cell line: utility of highly reactive substrate peptides: utility of highly reactive substrate peptides. Amino Acids 44:209–214

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Warburton RR, Preston IR, Roberts KE, Comhair SA, Erzurum SC, Hill NS, Fanburg BL (2012) Serotonylated fibronectin is elevated in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302:1273–1279

    Article  Google Scholar 

  • Yamane A, Fukui M, Sugimura Y, Itoh M, Alea MP, El Alaoui S, Akiyama M, Hitomi K (2010) Identification of a preferred substrate peptide for transglutaminase 3 and detection of in situ activity in skin and hair follicles. FEBS J 277:3564–3574

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, Hendriks W, de Jong WW, Schalkwijk J (1997) Identification and sequence analysis of two new members of the SKALP/elafin and SPAI-2 gene family. Biochemical properties of the transglutaminase substrate motif and suggestions for a new nomenclature. J Biol Chem 272:20471–20478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Hitomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hitomi, K., Tatsukawa, H. (2015). Preferred Substrate Structure of Transglutaminases. In: Hitomi, K., Kojima, S., Fesus, L. (eds) Transglutaminases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55825-5_3

Download citation

Publish with us

Policies and ethics