Skip to main content

Murine Models of Vein Grafting

  • Chapter
  • First Online:
Book cover Mouse Models of Vascular Diseases
  • 1052 Accesses

Abstract

Vein graft research has increasingly turned to murine models, to exploit the potential of transgenic and knockout mouse lines to study genetically based questions. Several models of murine interpositional vein grafting into arteries have been published, as well as models of vein patch grafting. Models vary on the vein graft source (inferior vena cava, external jugular vein or its distal branches), recipient artery (aorta, carotid, or femoral), and method of engraftment (end-to-end or end-to-side continuous or interrupted suturing or ring-coupling techniques). Outcomes vary considerably, depending on the model employed; neointimal wall thickening is induced that is often comparable to larger vein graft models on an absolute basis, despite the much smaller vessel diameters of mouse vein grafts. Substantial vein graft stenosis is apparently only found with the smaller of these vein graft models. Selecting the appropriate model requires careful consideration of the specific research question to be addressed as well as laboratory expertise with microsurgical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess CN, Lopes RD, Gibson CM, et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014;130:1445–51.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Aranki SF, Tatooles AJ. Disconnect between vein graft failure and clinical events after coronary artery bypass graft surgery. Circulation. 2014;130:1439–41.

    Article  PubMed  Google Scholar 

  3. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–31.

    Article  CAS  PubMed  Google Scholar 

  4. Halabi AR, Alexander JH, Shaw LK, et al. Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. Am J Cardiol. 2005;96:1254–9.

    Article  PubMed  Google Scholar 

  5. Cooley BC. Experimental vein graft research: a critical appraisal of models. Heart Res Open J. 2015;2:53–9. http://dx.doi.org/10.17140/HROJ-2-110

    Google Scholar 

  6. Abbasi K, Shalileh K, Anvari MS, et al. Perivascular nitric oxide delivery to saphenous vein grafts prevents graft stenosis after coronary artery bypass grafting: a novel sheep model. Cardiology. 2011;118:8–15.

    Article  CAS  PubMed  Google Scholar 

  7. Shiroma H, Kusaba A. Ultrastructural features of progressive intimal hyperplasia at the distal end-to-side anastomosis of vein grafts. Cardiovasc Surg. 1996;4:393–8.

    Article  CAS  PubMed  Google Scholar 

  8. Saito T, Iguchi A, Tabayashi K. Irradiation inhibits vascular anastomotic stenosis in a canine model. Gen Thorac Cardiovasc Surg. 2009;57:406–12.

    Article  PubMed  Google Scholar 

  9. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989;5:70–6.

    Article  CAS  PubMed  Google Scholar 

  10. Gierut JJ, Jacks TE, Haigis KM. Strategies to achieve conditional gene mutation in mice. Cold Spring Harb Protoc. 2014;4:339–49.

    Google Scholar 

  11. Cooley BC. Murine model of neointimal formation and stenosis in vein grafts. Arterioscler Thromb Vasc Biol. 2004;24:1180–5.

    Article  CAS  PubMed  Google Scholar 

  12. Hu Y, Mayr M, Metzler B, Erdel M, Davison F, Xu Q. Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res. 2002;91:e13–20.

    Article  PubMed  Google Scholar 

  13. Cooley BC, Nevado J, Mellad J, et al. TGF-β signaling mediates endothelial to mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med. 2014;6:227ra234.

    Google Scholar 

  14. Maroney SA, Cooley BC, Ferrel JP, Bonesho CE, Mast AE. Murine hematopoietic cell tissue factor pathway inhibitor limits thrombus growth. Arterioscler Thromb Vasc Biol. 2011;31:821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of venous bypass graft arteriosclerosis. Am J Pathol. 1998;153:1301–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhang L, Hagen PO, Kisslo J, Peppel K, Freedman NJ. Neointimal hyperplasia rapidly reaches steady state in a novel murine vein graft model. J Vasc Surg. 2002;36:824–32.

    Article  PubMed  Google Scholar 

  17. Diao Y, Xue J, Segal MS. A novel mouse model of autologous venous graft intimal hyperplasia. J Surg Res. 2005;126:106–13.

    Article  CAS  PubMed  Google Scholar 

  18. Salzberg SP, Filsoufi F, Anyanwu A, von Harbou K, Karlof E, Carpentier A, et al. Increased neointimal formation after surgical vein grafting in a murine model of type 2 diabetes. Circulation. 2006;114:I302–1307.

    Article  PubMed  Google Scholar 

  19. Greene EC. Anatomy of the rat. Philadelphia: Macmillan Publishing Co.; 1935.

    Google Scholar 

  20. Shi C, Patel A, Zhang D, et al. Plasminogen is not required for neointima formation in a mouse model of vein graft stenosis. Circ Res. 1999;84:883–90.

    Article  CAS  PubMed  Google Scholar 

  21. Sakaguchi T, Asai T, Belov D, et al. Influence of ischemic injury on vein graft remodeling: role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J Thorac Cardiovasc Surg. 2005;129:129–37.

    Article  CAS  PubMed  Google Scholar 

  22. Gottlob R. The preservation of the venous endothelium by ‘dissection without touching’ and by an atraumatic technique of vascular anastomosis. The importance for arterial and venous surgery. Minerva Chir. 1977;32:693–700.

    CAS  PubMed  Google Scholar 

  23. Adcock OT, Adcock GL, Wheeler JR, Gregory RT, Snyder SO, Gayle RG. Optimal techniques for harvesting and preparation of reversed autogenous vein grafts for use as arterial substitutes: a review. Surgery. 1984;96:886–94.

    PubMed  Google Scholar 

  24. Tsui JCS, Souza DSR, Filbey D, Bomfim V, Dashwood MR. Preserved endothelial integrity and nitric oxide synthase in saphenous vein grafts harvested by a ‘no-touch’ technique. Br J Surg. 2001;88:1209–15.

    Article  CAS  PubMed  Google Scholar 

  25. Tennant M, McGeachie JK. Adaptive remodelling of smooth muscle in the neo-intima of vein-to-artery grafts in rats: a detailed morphometric analysis. Anat Embryol. 1993;187:161–6.

    Article  CAS  PubMed  Google Scholar 

  26. Mann MJ, Gibbons GH, Kernoff RS, et al. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci U S A. 1995;92:4502–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wolff RA, Tomas JJ, Hullett DA, et al. Macrophage depletion reduces monocyte chemotactic protein-1 and transforming growth factor-β1 in healing rat vein grafts. J Vasc Surg. 2004;39:878–88.

    Article  PubMed  Google Scholar 

  28. Suggs WD, Olson SC, Mandani D, Petal S, Veith FJ. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery. 1999;126:443–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cooley BC. Differential neointimal response in vein grafts and wire-injured arteries. Circ J. 2007;71:1649–52.

    Google Scholar 

  30. Dilley RJ, McGeachie JK, Tennant M. The role of cell proliferation and migration in the development of a neo-intimal layer in veins grafted into arteries, in rats. Cell Tissue Res. 1992;269:281–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhang L, Freedman NJ, Brian L, Peppel K. Graft-extrinsic cells predominate in vein graft arterialization. Arterioscler Thromb Vasc Biol. 2004;24:470–6.

    Article  PubMed  Google Scholar 

  33. Xu Q, Zhang Z, Davison F, Hu Y. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice. Circ Res. 2003 Oct 17;93(8):e76-86.

    Google Scholar 

  34. Zhang L, Brian L, Freedman NJ. Vein graft neointimal hyperplasia is exacerbated by CXCR4 signaling in vein graft-extrinsic cells. J Vasc Surg. 2012;56:1390–7.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hu Y, Xu Q. New mouse model of vein bypass graft atherosclerosis. Heart Lung Circ. 2002;11:182–8.

    Article  PubMed  Google Scholar 

  36. Liu S, Li Y, Zhang Z, Xie F, et al. α1-Adrenergic receptors mediate combined signals initiated by mechanical stretch stress and norepinephrine leading to accelerated mouse vein graft atherosclerosis. J Vasc Surg. 2013;57:1645–56.

    Article  PubMed  Google Scholar 

  37. Chen Y, Wong MM, Campagnolo P, et al. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol. 2013;33:1844–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Cooley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Cooley, B.C. (2016). Murine Models of Vein Grafting. In: Sata, M. (eds) Mouse Models of Vascular Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55813-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55813-2_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55811-8

  • Online ISBN: 978-4-431-55813-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics