Skip to main content

Murine Heart Transplantation and Graft Arterial Disease

  • Chapter
  • First Online:
Mouse Models of Vascular Diseases

Abstract

Although more than 116,000 heart transplantations have been performed worldwide to date, graft arterial disease (GAD), which is a phenomenon of chronic rejection, is still a serious problem. Because GAD involves entire allograft arteries, angioplasty and bypass grafting are not practical treatment options. Therefore, GAD is the biggest long-term limitation in cardiac allograft recipients. Because the cause of GAD is mostly immunologic, several cytokines, chemokines, and adhesion molecules play a critical role in the process. Although there has been no established clinical strategy for preventing or treating GAD, recent investigations have proved some promising methodologies. In this article, we described a protocol of murine cardiac transplantation and pathological characteristics of GAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, Dobbels F, Goldfarb SB, Levvey BJ, Meiser B, Yusen RD, Stehlik J, International Society of Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Thirty-first Official Adult Heart Transplant Report-2014; Focus Theme: Retransplantation. J Heart Lung Transplant. 2014;33:996–1008.

    Article  PubMed  Google Scholar 

  2. Suzuki J, Isobe M, Morishita R, Nagai R. Characteristics of chronic rejection in heart transplantation – important elements of pathogenesis and future treatments-. Circ J. 2010;74:233–9.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell RN. Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol. 2009;4:19–47.

    Article  CAS  PubMed  Google Scholar 

  4. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;117:2131–41.

    Article  PubMed  Google Scholar 

  5. Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg. 2005;48:319–27.

    PubMed Central  PubMed  Google Scholar 

  6. Mitchell R, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res. 2007;100:967–78.

    Article  CAS  PubMed  Google Scholar 

  7. Libby P, Pober J. Chronic rejection. Immunity. 2001;14:387–97.

    Article  CAS  PubMed  Google Scholar 

  8. Furukawa Y, Libby P, Stinn J, Becker G, Mitchell R. Cold ischemia enhances cytokine/cell adhesion molecule expression and induces graft arterial disease in isografts, but does not accentuate alloimmune responses of nonimmunosuppressed hosts. Am J Pathol. 2002;160:1077–87.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dhaliwal A, Thohan V. Cardiac allograft vasculopathy: the Achilles heel of long-term survival after cardiac transplantation. Curr Atheroscler Rep. 2006;8:119–30.

    Article  PubMed  Google Scholar 

  10. Suzuki J, Isobe M, Aikawa M, Kawauchi M, Shiojima I, Kobayashi N, et al. Nonmuscle and smooth muscle myosin heavy chain expression in rejected cardiac allografts -A study in rat and monkey models. Circulation. 1996;94:1118–24.

    Article  CAS  PubMed  Google Scholar 

  11. Shah R, Mitchell R. The role of stem cells in the response to myocardial and vascular wall injury. Cardiovasc Pathol. 2005;14:225–31.

    Article  CAS  PubMed  Google Scholar 

  12. Tuzcu E, Kapadia S, Sachar R, Ziada K, Crowe T, Feng J, et al. Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol. 2005;45:1538–42.

    Article  PubMed  Google Scholar 

  13. Bogot NR, Durst R, Shaham D, Admon D. Cardiac CT of the transplanted heart: indications, technique, appearance, and complications. Radiographics. 2007;27:1297–309.

    Article  PubMed  Google Scholar 

  14. Michaels P, Espejo M, Kobashigawa J, Alejos J, Burch C, Takemoto S, et al. Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease. J Heart Lung Transplant. 2003;22:58–69.

    Article  PubMed  Google Scholar 

  15. Wehner J, Morrell C, Reynolds T, Rodriguez E, Baldwin W. Antibody and complement in transplant vasculopathy. Circ Res. 2007;100:191–203.

    Article  CAS  PubMed  Google Scholar 

  16. Caforio A, Tona F, Fortina A, Angelini A, Piaserico S, Gambino A, et al. Immune and nonimmune predictors of cardiac allograft vasculopathy onset and severity: multivariate risk factor analysis and role of immunosuppression. Am J Transplant. 2004;4:962–70.

    Article  PubMed  Google Scholar 

  17. el-Sawy T, Fahmy N, Fairchild R. Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol. 2002;14:562–8.

    Article  CAS  PubMed  Google Scholar 

  18. Valantine H. The role of viruses in cardiac allograft vasculopathy. Am J Transplant. 2004;4:169–77.

    Article  PubMed  Google Scholar 

  19. Streblow D, Kreklywich C, Andoh T, Moses A, Dumortier J, Smith PP, et al. The role of angiogenic and wound repair factors during CMV-accelerated transplant vascular sclerosis in rat cardiac transplants. Am J Transplant. 2008;8:277–87.

    Article  CAS  PubMed  Google Scholar 

  20. Isobe M, Kosuge H, Suzuki J. T cell costimulation in the development of cardiac allograft vasculopathy: Potential targets for therapeutic interventions. Arterioscler Thromb Vasc Biol. 2006;26:1447–56.

    Article  CAS  PubMed  Google Scholar 

  21. Denton M, Davis S, Baum M, Melter M, Reinders M, Exeni A, et al. The role of the graft endothelium in transplant rejection: evidence that endothelial activation may serve as a clinical marker for the development of chronic rejection. Pediatr Transplant. 2000;4:252–60.

    Article  CAS  PubMed  Google Scholar 

  22. Dietrich H, Hu Y, Zou Y, Dirnhofer S, Kleindienst R, Wick G, et al. Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule–1. Arterioscler Thromb Vasc Biol. 2000;20:343–52.

    Article  CAS  PubMed  Google Scholar 

  23. Isobe M, Yagita H, Okumura K, Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science. 1992;255:1125–7.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki J, Isobe M, Yamazaki S, Sekiguchi M. Inhibition of accelerated coronary atherosclerosis with short-term blockade of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in a heterotopic murine model of heart transplantation. J Heart Lung Transplant. 1997;16:1141–8.

    CAS  PubMed  Google Scholar 

  25. Furukawa Y, Mandelbrot D, Libby P, Sharpe A, Mitchell R. Association of B7-1 costimulation with the development of graft arterial disease: studies using mice lacking B7-1, B7-2, or B7-1/B7-2. Am J Pathol. 2000;157:473–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kosuge H, Suzuki J, Gotoh R, Koga N, Ito H, Isobe M, et al. The induction of immunological tolerance to cardiac allograft by simultaneous blockade of inducible co-stimulator (ICOS) and CTLA4 pathway. Transplantation. 2003;75:1374–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kosuge H, Suzuki J, Haraguchi G, Koga N, Maejima Y, Inobe M, et al. Critical role of inducible costimulator signaling in the development of arteriosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2660–5.

    Article  CAS  PubMed  Google Scholar 

  28. Yamazaki S, Isobe M, Suzuki J, Tojo S, Horie S, Okubo Y, et al. Role of selectin-dependent adhesion in cardiac allograft rejection. J Heart Lung Transplant. 1998;17:1007–16.

    CAS  PubMed  Google Scholar 

  29. Kosuge H, Suzuki J, Kakuta T, Haraguchi G, Koga N, Futamatsu H, et al. Attenuation of graft arterial disease by manipulation of the LIGHT pathway. Arterioscler Thromb Vasc Biol. 2004;24:1409–15.

    Article  CAS  PubMed  Google Scholar 

  30. Saiki H, Suzuki J, Kosuge H, Haraguchi G, Haga T, Maejima Y, et al. Blockade of the 4-1BB pathway attenuates graft arterial disease in cardiac allografts. Int Heart J. 2008;49:105–18.

    Article  CAS  PubMed  Google Scholar 

  31. Koga N, Suzuki J, Kosuge H, Haraguchi G, Onai Y, Futamatsu H, et al. The blockade of the interaction between PD-1 and PD-L1 accelerates graft arterial disease in cardiac allografts. Arterioscler Thromb Vasc Biol. 2004;24:2057–62.

    Article  CAS  PubMed  Google Scholar 

  32. Tellides G, Pober J. Interferon-γ axis in graft arteriosclerosis. Circ Res. 2007;100:622–32.

    Article  CAS  PubMed  Google Scholar 

  33. Nagano H, Mitchell R, Taylor M, Hasegawa S, Tilney N, Libby P. Interferon-γ deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100:550–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gerdes N, Sukhova G, Libby P, Reynolds R, Young J, Schönbeck U. Expression of interleukin-18 and functional IL-18 receptor on vascular endothelial cells, smooth muscle cells, and macrophages: implication for atherogenesis. J Exp Med. 2002;195:245–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tellides G, Tereb D, Kirkiles-Smith N, Kim R, Wilson JH, Schechner JS, et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature. 2000;403:207–11.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki J, Cole S, Batirel S, Kosuge H, Shimizu K, Isobe M, et al. Tumor necrosis factor receptor–1 and –2 double deficiency reduces graft arterial disease in murine cardiac allografts. Am J Transplant. 2003;3:968–76.

    Article  CAS  PubMed  Google Scholar 

  37. Nelson P, Krensky A. Chemokines, chemokine receptors, and allograft rejection. Immunity. 2001;14:377–86.

    Article  CAS  PubMed  Google Scholar 

  38. von Hundelshausen P, Weber K, Huo Y, Proudfoot A, Nelson P, Ley K, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001;103:1772–7.

    Article  Google Scholar 

  39. Zhao D, Hu Y, Miller G, Luster A, Mitchell R, Libby P. Differential expression of the IFN-γ-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell α chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol. 2002;169:1556–60.

    Article  CAS  PubMed  Google Scholar 

  40. van Loosdregt J, van Oosterhout M, Bruggink A, van Wichen D, van Kuik J, de Koning E, et al. The chemokine and chemokine receptor profile of infiltrating cells in the wall of arteries with cardiac allograft vasculopathy is indicative of a memory T–helper 1 response. Circulation. 2006;114:1599–607.

    Article  CAS  PubMed  Google Scholar 

  41. Gao W, Topham P, King J, Smiley S, Csizmadia V, Lu B, Gerard CJ, et al. Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J Clin Invest. 2000;105:35–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shimizu K, Mitchell R. Stem cell origins of intimal cells in graft arterial disease. Curr Atheroscler Rep. 2003;5:230–7.

    Article  PubMed  Google Scholar 

  43. Hillebrands J, Klatter F, Rozing J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis. Arterioscler Thromb Vasc Biol. 2003;23:380–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hillebrands J, Klatter F, van den Hurk BM, Popa E, Nieuwenhuis P, Rozing J. Origin of neointimal endothelium and α-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest. 2001;107:1411–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Glaser R, Lu M, Narula N, Epstein J. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation. 2002;106:17–9.

    Article  PubMed  Google Scholar 

  46. Minami E, Laflamme M, Saffitz J, Murry C. Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation. 2005;112:2951–8.

    PubMed  Google Scholar 

  47. Segovia J, Gomez-Bueno M, Alonso-Pulpon L. Treatment of allograft vasculopathy in heart transplantation. Expert Opin Pharmacother. 2006;7:2369–83.

    Article  CAS  PubMed  Google Scholar 

  48. Kobashigawa JA, Patel J, Furukawa H, Moriguchi JD, Yeatman L, Takemoto S, et al. Five-year results of a randomized, single-center study of tacrolimus vs microemulsion cyclosporine in heart transplant patients. J Heart Lung Transplant. 2006;25:434–9.

    Article  PubMed  Google Scholar 

  49. Kobashigawa JA, Tobis JM, Mentzer RM, Valantine HA, Bourge RC, Mehra MR, et al. Mycophenolate mofetil reduces intimal thickness by intravascular ultrasound after heart transplant: reanalysis of the multicenter trial. Am J Transplant. 2006;6:993–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kaczmarek I, Ertl B, Schmauss D, Sadoni S, Knez A, Daebritz S, et al. Preventing cardiac allograft vasculopathy: long-term beneficial effects of mycophenolate mofetil. J Heart Lung Transplant. 2006;25:550–6.

    Article  PubMed  Google Scholar 

  51. Mancini D, Pinney S, Burkhoff D, LaManca J, Itescu S, Burke E, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation. 2003;108:48–53.

    Article  CAS  PubMed  Google Scholar 

  52. Keogh A, Richardson M, Ruygrok P, Spratt P, Galbraith A, O’Driscoll G, et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation. 2004;110:2694–700.

    Article  CAS  PubMed  Google Scholar 

  53. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349:847–58.

    Article  CAS  PubMed  Google Scholar 

  54. Schroeder JS, Gao SZ, Alderman EL, Hunt SA, Johnstone I, Boothroyd DB, et al. A preliminary study of diltiazem in the prevention of coronary artery disease in heart-transplant recipients. N Engl J Med. 1993;328:164–70.

    Article  CAS  PubMed  Google Scholar 

  55. Steinhauff S, Pehlivanli S, Bakovic-Alt R, Meiser BM, Becker BF, von Scheidt W, et al. Beneficial effects of quinaprilat on coronary vasomotor function, endothelial oxidative stress, and endothelin activation after human heart transplantation. Transplantation. 2004;77:1859–65.

    Article  CAS  PubMed  Google Scholar 

  56. Bae JH, Rihal CS, Edwards BS, Kushwaha SS, Mathew V, Prasad A, et al. Association of angiotensin-converting enzyme inhibitors and serum lipids with plaque regression in cardiac allograft vasculopathy. Transplantation. 2006;82:1108–11.

    Article  CAS  PubMed  Google Scholar 

  57. Erinc K, Yamani MH, Starling RC, Crowe T, Hobbs R, Bott-Silverman C, et al. The effect of combined angiotensin-converting enzyme inhibition and calcium antagonism on allograft coronary vasculopathy validated by intravascular ultrasound. J Heart Lung Transplant. 2005;24:1033–8.

    Article  PubMed  Google Scholar 

  58. Kosuge H, Ishihara T, Haraguchi G, Maejima Y, Okada H, Saiki H, Suzuki J, Isobe M. Treatment with telmisartan attenuates graft arteriosclerosis in murine cardiac allografts. J Heart Lung Transplant. 2010;29:562–7.

    Article  PubMed  Google Scholar 

  59. Wenke K, Meiser B, Thiery J, Nagel D, von Scheidt W, Krobot K, et al. Simvastatin initiated early after heart transplantation: 8-year prospective experience. Circulation. 2003;107:93–7.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki J, Koga N, Kosuge H, Ogawa M, Haraguchi G, Maejima Y, Saiki H, Isobe M. Pitavastatin suppresses acute and chronic rejection in murine cardiac allografts. Transplantation. 2007;83:1093–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kosuge H, Haraguchi G, Koga N, Maejima Y, Suzuki J, Isobe M. Pioglitazone prevents acute and chronic cardiac allograft rejection. Circulation. 2006;113:2613–22.

    Article  CAS  PubMed  Google Scholar 

  62. Ogawa M, Suzuki J, Kosuge H, Takayama K, Nagai R, Isobe M. The mechanism of anti-inflammatory effects of prostaglandin E2 receptor 4 activation in murine cardiac transplantation. Transplantation. 2009;87:1645–53.

    Article  CAS  PubMed  Google Scholar 

  63. Ogawa M, Suzuki J, Yamaguchi Y, Muto S, Itai A, Hirata Y, Isobe M, Nagai R. The effects of pharmacological plasminogen activator inhibitor-1 inhibition in acute and chronic rejection in murine cardiac allografts. Transplantation. 2011;91:21–6.

    Article  CAS  PubMed  Google Scholar 

  64. Ogawa M, Suzuki J, Hishikari K, Takayama K, Tanaka H, Isobe M. Clarithromycin attenuates acute and chronic rejection via MMP suppression in murine cardiac transplantation. J Am Coll Cardiol. 2008;51:1977–85.

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki J, Ogawa M, Sagesaka YM, Isobe M. Tea catechins attenuate ventricular remodeling and graft arterial diseases in murine cardiac allografts. Cardiovasc Res. 2006;69:272–9.

    Article  CAS  PubMed  Google Scholar 

  66. Fang JC, Kinlay S, Beltrame J, Hikiti H, Wainstein M, Behrendt D, et al. Effect of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet. 2002;359:1108–13.

    Article  CAS  PubMed  Google Scholar 

  67. Iwanaga K, Hasegawa T, Hultquist DE, Harada H, Yoshikawa Y, Yanamadala S, et al. Riboflavin-mediated reduction of oxidant injury, rejection, and vasculopathy after cardiac allotransplantation. Transplantation. 2007;83:747–53.

    Article  CAS  PubMed  Google Scholar 

  68. Kawai T, Cosimi AB, Wee SL, Houser S, Andrews D, Sogawa H, et al. Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation. 2002;73:1757–64.

    Article  CAS  PubMed  Google Scholar 

  69. Isobe M, Suzuki J. New approaches to the management of acute and chronic cardiac allograft rejection. Jpn Circ J. 1998;62:315–27.

    Article  CAS  PubMed  Google Scholar 

  70. Morishita R. Perspective in progress of cardiovascular gene therapy. J Pharmacol Sci. 2004;95:1–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tsai LH, Harlow E, Meyerson M. Isolation of the human cdk2 gene that encodes the cycline A and adenovirus E1A associated p33 kinase. Nature. 1991;353:174–7.

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki J, Isobe M, Morishita R, Aoki M, Horie S, Okubo Y, et al. Prevention of graft coronary arteriosclerosis by antisense cdk2 kinase oligonucleotide. Nat Med. 1997;3:900–3.

    Article  CAS  PubMed  Google Scholar 

  73. Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda Y, et al. Single intraluminal delivery of antisense cdc 2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A. 1993;90:8474–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Suzuki J, Isobe M, Morishita R, Nishikawa T, Amano J, Kaneda Y. Prevention of cardiac allograft arteriosclerosis using antisense proliferating-cell nuclear antigen oligonucleotide. Transplantation. 2000;70:398–400.

    Article  CAS  PubMed  Google Scholar 

  75. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147:251–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Suzuki J, Isobe M, Morishita R, Nishikawa T, Amano J, Kaneda Y. Antisense bcl-x oligonucleotide induces apoptosis and prevents arterial neointimal formation in murine cardiac allografts. Cardiovasc Res. 2000;45:783–7.

    Article  CAS  PubMed  Google Scholar 

  77. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakajima M, Chang L, et al. A gene strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kawauchi M, Suzuki J, Morishita R, Wada Y, Izawa A, Tomita N, et al. Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates. Circ Res. 2000;87:1063–8.

    Article  CAS  PubMed  Google Scholar 

  79. Mann MJ, Whittemore AD, Donaldson MC, Belkin M, Conte MS, Polak JF, et al. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet. 1999;354:1493–8.

    Article  CAS  PubMed  Google Scholar 

  80. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson Jr TB, Lorenz TJ, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294:2446–54.

    Article  PubMed  Google Scholar 

  81. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki J, Morishita R, Amano J, Kaneda Y, Isobe M. Decoy against nuclear factor-kappa B attenuates myocardial cell infiltration and arterial neointimal formation in murine cardiac allografts. Gene Ther. 2000;7:1847–52.

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki J, Ito H, Gotoh R, Morishita R, Egashira K, Isobe M. Initial clinical cases using an NF-kB decoy at the site of the coronary stenting for prevention of restenosis. Circ J. 2004;68:270–1.

    Article  Google Scholar 

  84. Egashira K, Suzuki J, Ito H, Aoki M, Isobe M, Morishita R, for INDOR Study Group. Long-term follow up of initial clinical cases with NF-kB decoy oligodeoxynucleotide transfection at the site of the coronary stenting. J Gene Med. 2008;10:805–9.

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki J, Tezuka D, Morishita R, Isobe M. An initial case of suppressed restenosis with NF-kB decoy transfection after PCI. J Gene Med. 2009;11:89–91.

    Article  PubMed  Google Scholar 

  86. Kitamura S, Nakatani T, Kato T, Yanase M, Kobayashi J, Nakajima H, et al. Hemodynamic and echocardiographic evaluation of orthotopic heart transplantation with the modified bicaval anastomosis technique. Circ J. 2009;73:1235–9.

    Article  PubMed  Google Scholar 

  87. Nakatani T, Fukushima N, Ono M, Saiki Y, Matsuda H, Yozu R, Isobe M. The registry report of heart transplantation in Japan (1999–2013). Circ J. 2014;78:2604–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Ms. Noriko Tamura and Ms. Yasuko Matsuda for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Suzuki, Ji., Ogawa, M., Isobe, M. (2016). Murine Heart Transplantation and Graft Arterial Disease. In: Sata, M. (eds) Mouse Models of Vascular Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55813-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55813-2_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55811-8

  • Online ISBN: 978-4-431-55813-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics