Skip to main content

Murine Models of Thrombosis and Hemostasis

  • Chapter
  • First Online:
Mouse Models of Vascular Diseases
  • 1114 Accesses

Abstract

The study of thrombosis and hemostasis has greatly benefited from the development and application of murine models. Thrombosis models have been designed for applications to venous, arterial, and microvascular blood clotting. Common vessels include the infrarenal vena cava, the carotid artery, and several microvessel sites based on thin tissue layers. Methods of analysis range from simple weight/length measurements or time for an occlusive thrombus to grow to more sophisticated intravital fluorescence imaging over time using fluorophore-labeled, thrombus-targeting molecules and cells. Hemostasis models have focused on tail resection designs, to measure the time to hemostatic achievement or collection of blood to measure total volume of blood lost. Other hemostatic models have been designed around injury/transection of the saphenous vein. These many models have been applied with high success to a large variety of transgenic and knockout mouse lines, to determine gene-specific effects on blood clotting under various conditions. Future studies will benefit from appropriate model selection, matching the specific model to the research question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loscalzo J, Schafer AI, editors. Thrombosis and hemorrhage. 3rd ed. Philadelphia: Lippincott Williams & Wilkens; 2003.

    Google Scholar 

  2. Smith SA, Travers RJ, Morrissey JH: How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015; Early Online: 1–11

    Google Scholar 

  3. Owens 3rd AP, Mackman N. Tissue factor and thrombosis: the clot starts here. Thromb Haemost. 2010;104:432–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.

    Article  CAS  PubMed  Google Scholar 

  5. Nuyttens BP, Thijs T, Deckmyn H, Broos K. Platelet adhesion to collagen. Thromb Res. 2011;127 Suppl 2:S26–9.

    Article  CAS  PubMed  Google Scholar 

  6. Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vascul Pharmacol. 2014;62:72–81. doi:10.1016/j.vph.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad SS, London FS, Walsh PN. The assembly of the factor X-activating complex on activated human platelets. J Thromb Haemost. 2003;1:48–59.

    Article  CAS  PubMed  Google Scholar 

  8. Nachman RL, Leung LL. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest. 1982;69:263–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Niewiarowski S, Kornecki E, Budzynski AZ, Morinelli TA, Tuszynski GP. Fibrinogen interaction with platelet receptors. Ann N Y Acad Sci. 1983;408:536–55.

    Article  CAS  PubMed  Google Scholar 

  10. Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem. 1992;267:16637–43.

    CAS  PubMed  Google Scholar 

  11. Bucx JJ, de Scheerder I, Beatt K, van den Brand M, Suryapranata H, de Feyter PJ, et al. The importance of adequate anticoagulation to prevent early thrombosis after stenting of stenosed venous bypass grafts. Am Heart J. 1991;121:1389–96.

    Article  CAS  PubMed  Google Scholar 

  12. Clagett GP, Sobel M, Jackson MR, Lip GY, Tangelder M, Verhaeghe R. Antithrombotic therapy in peripheral arterial occlusive disease: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126 Suppl 3:609S–26.

    Article  CAS  PubMed  Google Scholar 

  13. Imperiale TF, Speroff T. A meta-analysis of methods to prevent venous thromboembolism following total hip replacement. JAMA. 1994;271:1780–5.

    Article  CAS  PubMed  Google Scholar 

  14. Lotke PA, Lonner JH. The benefit of aspirin chemoprophylaxis for thromboembolism after total knee arthroplasty. Clin Orthop Relat Res. 2006;452:175–80.

    Article  PubMed  Google Scholar 

  15. Dorr LD, Gendelman V, Maheshwari AV, Boutary M, Wan Z, Long WT. Multimodel thromboprophylaxis for total hip and knee arthroplasty based on risk assessment. J Bone Joint Surg Am. 2007;89:2648–57.

    Article  PubMed  Google Scholar 

  16. Myers DD, Hawley AE, Farris DM, Wrobleski SK, Thanaporn P, Schaub RG, et al. P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J Vasc Surg. 2003;38:1075–89.

    Article  PubMed  Google Scholar 

  17. Downing LJ, Strieter RM, Kadell AM, Wilke CA, Brown SL, Wrobleski SK, et al. Neutrophils are the initial cell type identified in deep venous thrombosis induced vein wall inflammation. ASAIO J. 1996;42:M677–82.

    Article  CAS  PubMed  Google Scholar 

  18. Deykin D, Wessler S. Activation product, factor IX, serum thrombotic accelerator activity, and serum-induced thrombosis. J Clin Invest. 1964;43:160–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Diaz JA, Farris DM, Wrobleski SK, Myers DD, Wakefield TW. Inferior vena cava branch variations in C57BL/6 mice have an impact on thrombus size in an IVC ligation (stasis) model. J Thromb Haemost. 2015;13:660–4.

    Article  CAS  PubMed  Google Scholar 

  20. Myers Jr D, Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, et al. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res. 2002;108:212–21.

    Article  CAS  PubMed  Google Scholar 

  21. Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, et al. Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg. 2005;42:140–8.

    Article  PubMed  Google Scholar 

  22. Nordstrom M, Lindblad B. Autopsy-verified venous thromboembolism within a defined urban population – the city of Malmo, Sweden. APMIS. 1998;106:378–84.

    Article  CAS  PubMed  Google Scholar 

  23. Chau KY, Yuen ST, Wong MP. Clinicopathological pattern of pulmonary thromboembolism in Chinese autopsy patients. Comparison with Caucasian series. Pathology. 1997;29:263–6.

    Article  CAS  PubMed  Google Scholar 

  24. Singh I, Smith A, Vanzieleghem B, Collen D, Burnand K, Saint-Remy J-M, Jacquemin M. Antithrombotic effects of controlled inhibition of factor VIII with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood. 2002;99:3235–40.

    Article  CAS  PubMed  Google Scholar 

  25. Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice. Rescue by normal bone marrow-derived cells. Circulation. 2003;107:869–75.

    Article  CAS  PubMed  Google Scholar 

  26. Wang JG, Geddings JE, Aleman MM, Cardenas JC, Chantrathammachart P, Williams JC, et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood. 2012;119:5543–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Kollnberger M, et al. Von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117:1400–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  Google Scholar 

  29. Brandt M, Schonfelder T, Schwenk M, Becker C, Jackel S, Reinhardt C, et al. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches. Clin Hemorheol Microcirc. 2014;56:145–52.

    PubMed  Google Scholar 

  30. Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation. 2005;111:2645–53.

    Article  CAS  PubMed  Google Scholar 

  31. Geddings J, Aleman MM, Wolberg A, von Br€uhl ML, Massberg S, Mackman N. Strengths and weaknesses of a new mouse model of thrombosis induced by inferior vena cava stenosis: communication from the SSC of the ISTH. J Thromb Haemost. 2014;12:571–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Romson JL, Haack DW, Lucchesi BR. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res. 1980;17:841–53.

    Article  CAS  PubMed  Google Scholar 

  33. Diaz JA, Hawley AE, Alvarado CM, Berguer AM, Baker NK, Wrobleski SK, et al. Thrombogensis with continuous blood flow in the inferior vena cava. A novel mouse model. Thromb Haemost. 2010;104:366–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cooley BC, Szema L, Chen CY, Schwab JP, Schmeling G. A murine model of deep vein thrombosis: characterization and validation in transgenic mice. Thromb Haemost. 2005;94:498–503.

    CAS  PubMed  Google Scholar 

  35. Cooley BC. In vivo fluorescence imaging of large-vessel thrombosis in mice. Arterioscler Thromb Vasc Biol. 2011;31:1351–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cooley BC, Chen CY, Hess R, Schmeling G. Incomplete resolution of deep vein thrombosis under reduced flow conditions. Thromb Res. 2013;131:55–8.

    Article  CAS  PubMed  Google Scholar 

  37. Maroney SA, Cooley BC, Ferrel JP, Bonesho CE, Nielsen LV, Johansen PB, et al. Absence of hematopoietic tissue factor pathway inhibitor mitigates bleeding in mice with hemophilia. Proc Natl Acad Sci U S A. 2012;109:3927–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Smith AS, Choi SH, Collins JNR, Travers RJ, Cooley BC, Morrissey JH. Inhibition of polyphosphate as a novel strategy for preventing thrombosis and inflammation. Blood. 2012;120:5103–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kuether EL, Fahs SA, Cooley BC, Schroeder JA, Montgomery RR, Wilcox DA, et al. Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-FVIII immunity. J Thromb Haemost. 2012;10:1570–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhi H, Rauova L, Hayes V, Gao C, Boylan B, Newman DK, et al. Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo. Blood. 2013;121:1858–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cooley BC, Herrera AJ. Cross-modulatory effects of clopidogrel and heparin on platelet and fibrin incorporation in thrombosis. Blood Coagul Fibrinolysis. 2013;24:593–8.

    Article  CAS  PubMed  Google Scholar 

  42. Aleman MM, Walton BL, Byrnes JR, Wang JG, Heisler MJ, Machlus KR, Cooley BC, Wolberg AS. Elevated prothrombin promotes venous, but not arterial, thrombosis in mice. Arterioscler Thromb Vasc Biol. 2013;33:1829–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ellery PER, Maroney SA, Cooley BC, Luyendyk JP, Zogg M, Weiler H, Mast AE. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development. Blood. 2015;125:4078–84.

    Article  CAS  PubMed  Google Scholar 

  44. Pierangeli SS, Liu XW, Barker JH, Anderson G, Harris EN. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost. 1995;74:1361–7.

    CAS  PubMed  Google Scholar 

  45. Buyue Y, Whinna HC, Sheehan JP. The heparin-binding exosite of factor IXa is a critical regulator of plasma thrombin generation and venous thrombosis. Blood. 2008;112:3234–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wang X, Smith PL, Hsu MY, Ogletree ML, Schumacher WA. Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. J Thromb Haemost. 2006;4:403–10.

    Article  PubMed  Google Scholar 

  47. Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60:269–80.

    Article  CAS  PubMed  Google Scholar 

  48. Fay WP, Parker AC, Ansari MN, Zheng X, Ginsburg D. Vitronectin inhibits the thrombotic response to arterial injury in mice. Blood. 1999;93:1825–30.

    CAS  PubMed  Google Scholar 

  49. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A. 1998;95:9524–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wang K, Xu L. An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis research. Thromb Res. 2005;115:95–100.

    Article  CAS  PubMed  Google Scholar 

  51. Kwon I, Hong S-Y, Kim YD, Nam HS, Kang S, Yang SH, et al. Thrombolytic effects of the snake venom disintegrin saxatilin determined by novel assessment methods: a FeCl3-induced thrombosis model in mice. PLoS One. 2013;8:e81165. doi:10.1371/journal.pone.0081165.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kerlin B, Cooley BC, Isermann BH, Hernandez I, Sood R, Zogg M, et al. Cause-effect relation between hyperfibrinogenemia and vascular disease. Blood. 2004;103:1728–34.

    Article  CAS  PubMed  Google Scholar 

  53. Tseng M, Dozier A, Haribabu B, Graham UM. Transendothelial migration of ferric ion in FeCl3 injured murine common carotid artery. Thromb Res. 2006;118:275–80.

    Article  CAS  PubMed  Google Scholar 

  54. Eckly A, Hechler B, Freund M, Zerr M, Cazenave JP, Lanza F, et al. Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost. 2011;9:779–89.

    Article  CAS  PubMed  Google Scholar 

  55. Cooley BC. Murine arterial thrombus induction mechanism influences subsequent thrombodynamics. Thromb Res. 2015;135:939–43.

    Article  CAS  PubMed  Google Scholar 

  56. Kawasaki T, Kaida T, Vermylen AJ, Hoylaerts MF. A new animal model of thrombophilia confirms that high plasma factor VIII levels are thrombogenic. Thromb Haemost. 1999;81:306–11.

    CAS  PubMed  Google Scholar 

  57. Eitzman DT, Westrick RJ, Nabel EG, Ginsburg D. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood. 2000;95:577–80.

    CAS  PubMed  Google Scholar 

  58. Matsuno H, Kozawa O, Niwa M, Ueshima S, Matsuo O, Collen D, Uematsu T. Differential role of components of the fibrinolytic system in the formation and removal of thrombus induced by endothelial injury. Thromb Haemost. 1999;81:601–4.

    CAS  PubMed  Google Scholar 

  59. Kusada A, Isogai N, Cooley BC. Electric injury model of murine arterial thrombosis. Thromb Res. 2007;121:103–6.

    Article  CAS  PubMed  Google Scholar 

  60. Cooley BC, Gould JS. Experimental models for evaluating antithrombotic therapies in replantation microsurgery. Microsurgery. 1987;8:230–3.

    Article  CAS  PubMed  Google Scholar 

  61. Pierangeli SS, Barker JH, Stikovac D, Ackerman D, Anderson G, Barquinero J, et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost. 1994;71:670–4.

    CAS  PubMed  Google Scholar 

  62. Schulz C, Konrad I, Sauer S, Orschiedt L, Koellnberger M, Lorenz R, et al. Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo. Thromb Haemost. 2008;99:190–5.

    CAS  PubMed  Google Scholar 

  63. Kuijpers MJE, Gilio K, Reitsma S, Nergiz-Unal R, Prinzen L, Heeneman S, et al. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. J Thromb Haemost. 2009;7:152–61.

    Article  CAS  PubMed  Google Scholar 

  64. Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost. 2011;105 Suppl 1:S3–12.

    Article  CAS  PubMed  Google Scholar 

  65. Cooley BC. Collagen-induced thrombosis in murine arteries and veins. Thromb Res. 2013;131:49–54.

    Article  CAS  PubMed  Google Scholar 

  66. Cooley BC, Daley RA. Murine microvascular anastomosis model of thrombosis. Thromb Res. 1999;96:157–9.

    Article  CAS  PubMed  Google Scholar 

  67. Shi G, Meister D, Daley RA, Cooley BC. Thrombodynamics of microvascular repairs: effects of antithrombotic therapy on platelets and fibrin. J Hand Surg [Am]. 2013;38:1784–9.

    Article  Google Scholar 

  68. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med. 2002;8:1175–81.

    Article  CAS  PubMed  Google Scholar 

  69. Rumbaut RE, Bellera RV, Randhawa JK, Shrimpton CN, Dasgupta SK, Dong JF, et al. Endotoxin enhances microvascular thrombosis in mouse cremaster venules via a TLR4-dependent, neutrophil-independent mechanism. Am J Physiol Heart Circ Physiol. 2006;290:H1671–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chang M-C, Huang T-F. In vivo effect of a thrombin-like enzyme on platelet plug formation in mesenteric microvessels of mice. Thromb Res. 1994;73:31–8.

    Article  CAS  PubMed  Google Scholar 

  71. Rosen ED, Raymond S, Zollman A, Noria F, Sandoval-Cooper M, Shulman A, et al. Laser-induced noninvasive vascular injury models in mice generate platelet- and coagulation-dependent thrombi. Am J Pathol. 2001;158:1613–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kaiser B, Markwardt F. Antithrombotic and haemorrhagic effects of the naturally occurring thrombin inhibitor hirudin. Folia Haematol Int Mag Klin Morphol Blutforsch. 1988;115:41–6.

    CAS  PubMed  Google Scholar 

  73. Beviglia L, Poggi A, Rossi C, McLane MA, Calabrese R, Scanziani E, et al. Mouse antithrombotic assay. Inhibition of platelet thromboembolism by disintegrins. Thromb Res. 1993;71(4):301–15.

    Article  CAS  PubMed  Google Scholar 

  74. Broze GJ, Yin Z-F, Lasky N. A tail vein bleeding time model and delayed bleeding in hemophiliac mice. Thromb Haemost. 2001;85:747–8.

    CAS  PubMed  Google Scholar 

  75. Iwatsuki Y, Kawasaki T, Hayashi K, Moritani Y, Nii T, et al. Combined effects of a factor Xa inhibitor YM466 and a GPIIb/IIIa antagonist YM128 on thrombosis and neointima formation in mice. Thromb Haemost. 2004;92:1221–8.

    CAS  PubMed  Google Scholar 

  76. Pastoft AE, Lykkesfeldt J, Ezban M, Tranholm HC, Whinna HC, Laurizen B. A sensitive venous bleeding model in haemophilia A mice: effects of two recombinant FVIII products (N8 and Advate). Haemophilia. 2012;18:782–8.

    Article  CAS  PubMed  Google Scholar 

  77. Sehgal A, Barros S, Ivanciu L, Cooley B, Qin J, Racie T, et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med. 2015;21:492–7. doi:10.1038/nm.3847.

    Article  CAS  PubMed  Google Scholar 

  78. Getz TM, Piatt R, Petrich BG, Monroe D, Mackman N, Bergmeier W. Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition. J Thromb Haemost. 2015;13:417–25.

    Article  CAS  PubMed  Google Scholar 

  79. Øvlisen K, Kristensen AT, Valentino LA, Hakobyan N, Ingerslev J, Tranholm M. Hemostatic effect of recombinant factor VIIa, NN1731 and recombinant factor VIII on needle-induced joint bleeding in hemophilia A mice. J Thromb Haemost. 2008;6:969–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Cooley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Cooley, B.C. (2016). Murine Models of Thrombosis and Hemostasis. In: Sata, M. (eds) Mouse Models of Vascular Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55813-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55813-2_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55811-8

  • Online ISBN: 978-4-431-55813-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics