Electrical and Optical Defect Evaluation Techniques for Electronic and Solar Grade Silicon

  • Anthony R. Peaker
  • Vladimir P. Markevich
Part of the Lecture Notes in Physics book series (LNP, volume 916)


In this chapter we review techniques which characterize and quantify the properties of defects and impurities in silicon materials and devices in terms of their effect on free carriers and their recombination- generation behavior. In particular we explore the application of Deep Level Transient Spectroscopy (DLTS) and its many variants to electronic and solar grade silicon. The physics of carrier recombination at deep level defects is presented and the various methodologies to measure defect parameters related to Shockley-Read-Hall generation-recombination kinetics are discussed. The use of high resolution Laplace DLTS is presented and techniques for determining characteristics of minority carrier traps are explained. Methods to measure minority carrier lifetime and relate these measurements to the defect concentrations and properties are considered. Optical measurements to study defects are presented including optical absorption, Raman techniques and photoluminescence. The status and limitations of such techniques for qualification of silicon material are discussed.


Minority Carrier Carrier Lifetime Depletion Region Deep Level Transient Spectroscopy Free Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shockley, W., Read, W.T.: Phys. Rev. 87, 835 (1952)ADSCrossRefGoogle Scholar
  2. 2.
    Hall, R.N.: Phys. Rev. 87, 387 (1952)ADSCrossRefGoogle Scholar
  3. 3.
    Schroder, D.K.: Semiconductor Material and Device Characterization, 3rd edn. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  4. 4.
    Dziewior, J., Schmid, W.: Appl. Phys. Lett. 31, 346 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    Richter, A., Glunz, S.W., Werner, F., Schmidt, J., Cuevas, A.: Phys. Rev. B. 86, 165202 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Hangleiter, A.: Phys. Rev. B. 35, 9149 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Ambridge, T., Faktor, M.M.: J. Appl. Electrochem. 5, 319 (1975)CrossRefGoogle Scholar
  8. 8.
    Sah, C.T., Forbes, L., Rosier, L.C., Tasch, A.F.: Solid State Electron. 13, 759 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    Lang, D.J.: J. Appl. Phys. 45, 3023 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    Istratov, A.A.: J. Appl. Phys. 82, 2965 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Peaker, A.R., Markevich, V.P., Hawkins, I.D., Hamilton, B., Bonde Nielsen, K., Gościński, K.: Phys. B. Condens. Matter. 407, 3026 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Dobaczewski, L., Kaczor, P., Hawkins, I.D., Peaker, A.R.: J. Appl. Phys. 76, 194 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Dobaczewski, L., Peaker, A.R., Bonde Nielsen, K.: J. Appl. Phys. 96, 4689 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Hamilton, B., Peaker, A.R., Wight, D.R.: J. Appl. Phys. 50, 6373 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    Brunwin, R., Hamilton, B., Jordan, P., Peaker, A.R.: Electron. Lett. 15, 349 (1979)CrossRefGoogle Scholar
  16. 16.
    Lemke, H.: Phys. Status Solidi A. 64, 215 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    Kimerling, L.C., Benton, J.L.: Phys. B. 116, 297 (1983)CrossRefGoogle Scholar
  18. 18.
    Istratov, A.A., Hieslmair, H., Weber, E.R.: Appl. Phys. A. 69, 13 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Leonard, S., Markevich, V.P., Peaker, A.R., Hamilton, B., Murphy, J.D.: Appl. Phys. Lett. 107, 032103 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Zoth, G., Bergholz, W.: J. Appl. Phys. 67, 6764 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Kang, J.S., Schroder, D.K.: Phys. Status Solidi (a) 89, 13 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    Stevenson, D.T., Keyes, R.J.: J. Appl. Phys. 26, 190 (1955)ADSCrossRefGoogle Scholar
  23. 23.
    Kunst, M., Beck, G.: J. Appl. Phys. 60, 3558 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Horanyi, T.S., Pavelka, T., Tutto, P.: Appl. Surf. Sci. 63, 306 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Batra, N., Kumar, S., Sharma, M., Srivastava, S.K., Sharma, P., Singh, P.K.: Sol. Energy Mater. Sol. Cells 100, 43 (2011)CrossRefGoogle Scholar
  26. 26.
    Chabbra, B., Bowden, S., Opila, R.L., Honsberg, C.B.: Appl. Phys. Lett. 96, 063502 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    SEMI MF1535-0707. Test method for carrier recombination lifetime in silicon wafers by noncontact measurement of photoconductivity decay by microwave reflectance, (2007) from
  28. 28.
    Johnson, E.O., Johnson, L.G.: J. Appl. Phys. 28, 1349 (1957)ADSCrossRefGoogle Scholar
  29. 29.
    Sinton, R.A., Cuevas, A.: Appl. Phys. Lett. 69, 2510 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Macdonald, D., Sinton, R.A., Cuevas, A.: J. Appl. Phys. 89, 2772 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    McIntosh, K.R., Paudyal, B.B., Macdonald, D.: J. Appl. Phys. 104, 084503 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Isenberg, J., Riepe, S., Glunz, S.W., Warta, W.: J. Appl. Phys. 93, 4268 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Schubert, M.C., Isenberg, J., Warta, W.: J. Appl. Phys. 94, 4139 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Giesecke, J.A., Schubert, M.C., Walter, D., Warta, W.: Appl. Phys. Lett. 97, 092109 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Macdonald, D., Tan, J., Trupke, T.: J. Appl. Phys. 103, 073710 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Macdonald, D., Deenapanray, P.N.K., Diez, S.: J. Appl. Phys. 96, 3687 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Kohn, W.: Phys. Rev. 98, 915 (1955)ADSCrossRefGoogle Scholar
  38. 38.
    Kohn, W.: Solid State Phys. 5, 257 (1957)Google Scholar
  39. 39.
    Stoneham, A.M.: Theory of Defects in Solis. Oxford University Press, London (1975)Google Scholar
  40. 40.
    Ramdas, A.K., Rodriguez, S.: Rep. Prog. Phys. 44, 1297 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    Markevich, V.P., Suezawa, M., Sumino, K., Murin, L.I.: J. Appl. Phys. 76, 7347 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    Newman, R.C., Ashwin, R.J., Pritchard, R.E., Tucker, J.H.: Phys. Status Solidi (b) 210, 519 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Pajot, B.: Optical Absorption of Impurities and Defects in Semiconducting Crystals: I. Hydrogen-Like Centers. Springer Series in Solid State Sciences. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    Dawber, P.G., Elliot, R.J.: Proc. Phys. Soc. 81, 453 (1963)ADSCrossRefGoogle Scholar
  45. 45.
    Newman, R.C.: Infrared Studies of Crystal Defects. Taylor & Francis Ltd., London (1973)Google Scholar
  46. 46.
    Stavola, M.: Identification of defects in semiconductors. In: Stavola, M. (ed.) Semiconductors and Semimetals, vol. 51B, p. 153. Academic, San Diego (1999)Google Scholar
  47. 47.
    McCluskey, M.D.: J. Appl. Phys. 87, 3593 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Pajot, B.: Optical Absorption of Impurities and Defects in Semiconducting Crystals: Electronic Absorption of Deep Centres and Vibrational Spectra. Springer Series in Solid State Sciences. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    Lindström, J.L., Murin, L.I., Markevich, V.P., Hallberg, T., Svensson, B.G.: Phys. B. 273–274, 291 (1999)CrossRefGoogle Scholar
  50. 50.
    Baghdadi, A., Bullis, W.M., Croarkin, M.C., Li, Y.-Z., Scace, R.I., Series, R.W., Stallhofer, P., Watanabe, M.: J. Electrochem. Soc. 136, 2015 (1989)CrossRefGoogle Scholar
  51. 51.
    Bullis, W.M.: Oxygen in silicon. In: Shimura, F. (ed.) Semiconductors and Semimetals, vol. 42, p. 95. Academic, San Diego (1994)Google Scholar
  52. 52.
    Regolini, J.L., Stoquert, J.P., Ganter, C., Siffert, P.: J. Electrochem. Soc. 133, 2165 (1986)CrossRefGoogle Scholar
  53. 53.
    ASTM Standard F 1391–1393, Standard Test Method for Substitutional Atomic Carbon Content of Silicon by Infrared Absorption. 1996 Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken (1996)Google Scholar
  54. 54.
    ASTM Standard F 1188–1193a, Standard Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption. 1996 Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken (1996)Google Scholar
  55. 55.
    Tajima, M.: Appl. Phys. Lett. 32, 719 (1978) and Awai, T., Tajima, M., Ogura, A.: Phys. Status Solidi C 8, 792 (2011)Google Scholar
  56. 56.
    Japanese Industrial Standard, JIS H 0615 (1996)Google Scholar
  57. 57.
    Semiconductor Equipment and Materials International, SEMI MF1389–0704 (2004)Google Scholar
  58. 58.
    Haynes, J.R.: Phys. Rev. Lett. 4, 361 (1960)ADSCrossRefGoogle Scholar
  59. 59.
    Tajima, M., Iwai, T., Toyota, H., Binetti, S., Macdonald, D.: J. Appl. Phys. 110, 043506 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Davies, G.: Phys. Rep. 176, 83 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    Steger, M., Yang, A., Sekiguchi, T., Saeedi, K., Thewalt, M.L.W., Henry, M.O., Johnston, K., Riemann, H., Abrosimov, N.V., Churbanov, M.F., Gusev, A.V., Kaliteevskii, A.K., Godisov, O.N., Becker, P., Pohl, H.-J.: J. Appl. Phys. 110, 081301 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Shreter, Y.G., Rebane, Y.T., Peaker, A.R.: Phys. Status Solidi (a) 138, 681 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    Tajima, M.: IEEE J. Photovolt. 4, 1452 (2014). Tajima, M., Iwata, Y., Okayama, F., Toyota, H., Onodera, H., Sekiguchi, T.: J. Appl. Phys. 111, 113523 (2012)CrossRefGoogle Scholar
  64. 64.
    Sarau, G., Bochmann, A., Lewandowska, R., Christiansen, S.: From micro– to macro–Raman Spectroscopy: solar silicon for a case study, chapter 8. In: Dr. Muhammad Akhyar Farrukh (ed.) Advanced Aspects of Spectroscopy. ISBN: 978-953-51-0715-6, InTech (open access) (2012). doi: 10.5772/48160.
  65. 65.
    Sarau, G., Christiansen, S., Lewandowska, R., Roussel, B.: Proceedings 35th IEEE PVSC: 001770–001775 (2010)Google Scholar
  66. 66.
    Becker, M., Scheel, H., Christiansen, S., Strunk, H.P.: J. Appl. Phys. 101, 063531 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    Kunz, T., Hessmann, M.T., Seren, S., Meidel, B., Terheiden, B., Brabec, C.J.: J. Appl. Phys. 113, 023514 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Istratov, A.A., Weber, E.R.: Appl. Phys. A66, 123 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    Kitagawa, H.: Solid State Phenom. 71, 51 (2000)CrossRefGoogle Scholar
  70. 70.
    Graff, K.: Metal Impurities in Silicon-Device Fabrication. Springer Series in Materials Science. Springer, Berlin/Heidelberg (2000)CrossRefGoogle Scholar
  71. 71.
    Watkins, G.D.: Vacancies and interstitials and their interaction with impurities in c-Si. In: Hull, R. (ed.) Crystalline Silicon. EMIS Data Reviews Series, vol. 20, p. 643. INSPEC, London (1999)Google Scholar
  72. 72.
    Watkins, G.D., Corbett, J.W.: Phys. Rev. 121, 1001 (1961)ADSCrossRefGoogle Scholar
  73. 73.
    Kimerling, L.C.: Defect states in electron bombarded silicon: Capacitance transient analysis. In: Urli, N.B., Corbett, J.W. (eds.) Radiation Effects in Semiconductors 1976, p. 221. Institute of Physics, Bristol (1977)Google Scholar
  74. 74.
    Newman, R.C.: Rep. Prog. Phys. 45, 1163 (1982)ADSCrossRefGoogle Scholar
  75. 75.
    Watkins, G.D.: Materials Science and Technology, vol. 4. VCH, Weinheim (1991). ch. 3Google Scholar
  76. 76.
    Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J., Caefer, C.E.: Mater. Sci. Forum 38–41, 141 (1989)CrossRefGoogle Scholar
  77. 77.
    Libal, J., Novaglia, S., Acciari, M., Binetti, S., Petres, R., Arumughan, J., Kopecek, R., Prokopenko, A.: J. Appl. Phys. 104, 104507 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    Davies Jr, J.R., Rohatgi, A., Hopkins, R.H., Blais, P.D., Rai-Choudhury, P., McCormick, J.R., Mollenkopf, H.C.: IEEE Trans. Electron. Dev. ED-27, 677 (1980); Rohatgi, A., Rai-Choudhury, P.: Solar Cells 17, 119 (1986)Google Scholar
  79. 79.
    Pizzini, S., Acciarri, M., Binetti, S.: Phys. State Solid (a) 202, 2928 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Peaker, A.R., Markevich, V.P., Hamilton, B., Parada, G., Dudas, A., Pap, A., Don, E., Lim, B., Schmidt, J., Yu, L., Yoon, Y., Rozgonyi, G.: Phys. Status Solidi A. 209, 1884 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    Lanford, W.A., Rand, M.J.: J. Appl. Phys. 49, 2473 (1978)ADSCrossRefGoogle Scholar
  82. 82.
    van de Walle, C.G.: J. Vac. Sci. Tech. A16, 1767 (1998)ADSCrossRefGoogle Scholar
  83. 83.
    Peaker, A.R., Markevich, V.P., Dobaczewski, L.: Hydrogen-related defects in silicon, germanium and silicon-germanium alloys. In: Fleetwood, D.M., Pantelides, S.T., Schrimpf, R.D. (eds.) Defects in Microelectronic Materials and Devices, p. 27. CRC Press, Boca Raton (2009)Google Scholar
  84. 84.
    Deixler, P., Terry, J., Hawkins, I.D., Evans-Freeman, J.H., Peaker, A.R., Rubaldo, A.L., Maude, D.K., Portal, J.-C., Bonde Nielsen, K., Nylandsted Larsen, A., Mesli, A.: Appl. Phys. Lett. 73, 3126 (1998)ADSCrossRefGoogle Scholar
  85. 85.
    Leonard, S., Markevich, V.P., Peaker, A.R., Hamilton, B.: Appl. Phys. Lett. 103, 132103 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    Hallam, B.J., Hamer, P.G., Wenham, S.R., Abbott, M.D., Sugianto, A., Wenham, A.M., Chan, C.E., Xu, G., Kraiem, J., Degoulange, J., Einhaus, R.: IEEE J. Photovolt. 4, 88 (2014)CrossRefGoogle Scholar
  87. 87.
    Liu, A., Sun, C., Macdonald, D.: J. Appl. Phys. 116, 194902 (2014)ADSCrossRefGoogle Scholar
  88. 88.
    Fisher, H., Pschunder, W.: Proceedings of the 10th IEEE Photovolataic Specialist Conference, p. 404. IEEE, New York (1973)Google Scholar
  89. 89.
    Bothe, K., Schmidt, J.: J. Appl. Phys. 99, 013701 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    Rein, S., Glunz, S.W.: Appl. Phys. Lett. 82, 1054 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    Schmidt, J., Bothe, K.: Phys. Rev. B. 69, 024107 (2004)ADSCrossRefGoogle Scholar
  92. 92.
    Adey, J., Jones, R., Palmer, D.W., Briddon, P.R., Öberg, S.: Phys. Rev. Lett. 93, 055504 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    Du, M.-H., Branz, H.M., Crandall, R.S., Zhang, S.B.: Phys. Rev. Lett. 97, 256602 (2006)ADSCrossRefGoogle Scholar
  94. 94.
    Macdonald, D., Rougieux, F., Cuevas, A., Lim, B., Schmidt, J., Di Sabatino, M., Geerligs, L.J.: J. Appl. Phys. 105, 093704 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    Murin, L.I., Tolkacheva, E.A., Markevich, V.P., Peaker, A.R., Hamilton, B., Monakhov, E., Svensson, B.G., Lindström, J.L., Santos, P., Coutinho, J., Carvalho, A.: Appl. Phys. Lett. 98, 182101 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    Voronkov, V.V., Falster, R.: J. Appl. Phys. 107, 053509 (2010)ADSCrossRefGoogle Scholar
  97. 97.
    Rougieux, F.E., Lim, B., Schmidt, J., Forster, M., Macdonald, D., Cuevas, A.: J. Appl. Phys. 110, 063708 (2011)ADSCrossRefGoogle Scholar
  98. 98.
    Macdonald, D., Liu, A., Cuevas, A., Lim, B., Schmidt, J.: Phys. Status Solidi A. 208, 559 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    Istratov, A.A., Buonassisi, T., McDonald, R.J., Smith, A.R., Schindler, R., Rand, J.A., Kalejs, J.P., Weber, E.R.: J. Appl. Phys. 94, 6552 (2003)ADSCrossRefGoogle Scholar
  100. 100.
    Shabani, M.B., Yamashita, T., Morita, E.: ECS Trans. 16, 179 (2008)CrossRefGoogle Scholar
  101. 101.
    Macdonald, D., Cuevas, A., Kinomura, A., Nakano, Y., Geerligs, L.J.: J. Appl. Phys. 97, 033523 (2005)ADSCrossRefGoogle Scholar
  102. 102.
    Pizzini, S., Bigoni, L., Beghi, M.: J. Electrochem. Soc. 133, 2363 (1986)ADSCrossRefGoogle Scholar
  103. 103.
    Coletti, G., Bronsveld, P.C.P., Hahn, G., Warta, W., Macdonald, D., Ceccaroli, B., Wambach, K., Le Quang, N., Fernandez, J.M.: Adv. Funct. Mater. 21, 879 (2011)CrossRefGoogle Scholar
  104. 104.
    Coletti, G., Kvande, R., Mihailetchi, V.D., Geerligs, L.J., Arnberg, L., Øvrelid, E.J.: J. Appl. Phys. 104, 104913 (2008)ADSCrossRefGoogle Scholar
  105. 105.
    Sopori, B., Rupnowski, P., Shet, S., Budhraja, V., Call, N., Johnston, S., Seacrist, M., Shi, G., Chen, J., Deshpande, A.: Proceedings of the 35th Photovoltaic Specialists Conference, p. 2233. IEEE, Honolulu (2010)Google Scholar
  106. 106.
    Chen, J., Cornagliotti, E., Hieckmann, E., Behrendt, S., Weber, J., Simoen, E., Poortmans, J.: ECS Trans. 33, 71 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Photon Science InstituteUniversity of ManchesterManchesterUK

Personalised recommendations