Advertisement

Density Functional Modeling of Defects and Impurities in Silicon Materials

  • José CoutinhoEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 916)

Abstract

This is a contribution targeted for early scientists, from both academia and industry, providing the grounds for defect modeling in silicon materials using density functional methods. It starts with a revision of the theoretical framework and tools, including relevant approximations such as the treatment of the exchange-correlation interactions and the use of pseudopotentials. It then describes how to step up from total energies, electron densities and Kohn-Sham states to the actual defect observables. Particular emphasis is given to the calculation of spectroscopic observables such as electrical levels, local vibrational modes, spin densities, migration barriers, and defect response to uniaxial stress. Each of these techniques is accompanied by examples of defect calculations. It is shown how these results can be crucial in unraveling a detailed picture of many complexes, including substitutional and interstitial impurities, dopants, transition metals, carbon, oxygen or hydrogen. In the last section we take a look at some developments in modeling defects in silicon nanostructures. While holding promising optical and magnetic properties, nano-silicon presents many challenges, particularly with regard to defect control, doping and electrical transport.

Keywords

Density functional theory Defects in silicon Modeling Spectroscopy 

References

  1. 1.
    Bukhori, M., Roy, S., Asenov, A.: Simulation of statistical aspects of charge trapping and related degradation in bulk mosfets in the presence of random discrete dopants. IEEE Trans. Electron Devices 57(4), 795–803 (2010). doi:10.1109/TED.2010.2041859ADSCrossRefGoogle Scholar
  2. 2.
    Safarian, J., Tranell, G., Tangstad, M.: Processes for upgrading metallurgical grade silicon to solar grade silicon. Energy Procedia 20, 88–97 (2012). doi:10.1016/j.egypro.2012.03.011CrossRefGoogle Scholar
  3. 3.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Jones, R.O., Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989). doi:10.1103/RevModPhys.61.689ADSCrossRefGoogle Scholar
  6. 6.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi:10.1103/PhysRevB.50.17953ADSCrossRefGoogle Scholar
  7. 7.
    Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998). doi:10.1103/PhysRevB.58.3641ADSCrossRefGoogle Scholar
  8. 8.
    Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999). doi:10.1103/RevModPhys.71.1085ADSCrossRefGoogle Scholar
  9. 9.
    Beck, T.L.: Real-space mesh techniques in density-functional theory. Rev. Mod. Phys. 72, 1041–1080 (2000). doi:10.1103/RevModPhys.72.1041ADSCrossRefGoogle Scholar
  10. 10.
    Rayson, M.J., Briddon, P.R.: Highly efficient method for kohn-sham density functional calculations of 500–10000 atom systems. Phys. Rev. B 80, 205104 (2009). doi:10.1103/PhysRevB.80.205104ADSCrossRefGoogle Scholar
  11. 11.
    Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014). doi:10.1103/RevModPhys.86.253ADSCrossRefGoogle Scholar
  12. 12.
    Schiff, L.I.: Quantum Mechanics. McGraw-Hill, Singapore (1955)zbMATHGoogle Scholar
  13. 13.
    Born, M., Oppenheimer, R.: Zur quantentheorie der molekeln. Annalen der Physik 389, 457–484 (1927). doi:10.1002/andp.19273892002ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Watkins, G.D.: Deep Centers in Semiconductors, chap. 3 Gordon and Breach, New York (1986)Google Scholar
  15. 15.
    Probert, M.I.J., Payne, M.C.: Improving the convergence of defect calculations in supercells: an ab initio study of the neutral silicon vacancy. Phys. Rev. B 67, 075204 (2003). doi:10.1103/PhysRevB.67.075204ADSCrossRefGoogle Scholar
  16. 16.
    Wright, A.F.: Phys. Rev. B 74, 165116 (2006). doi:10.1103/PhysRevB.74.165116ADSCrossRefGoogle Scholar
  17. 17.
    Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951). doi:10.1103/RevModPhys.23.69ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Slater, J.C.: The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929). doi:10.1103/PhysRev.34.1293ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Thijssen, J.M.: Computational Physics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  20. 20.
    Koopmans, T.: Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1–6), 104–113 (1934). doi:10.1016/S0031-8914(34)90011-2ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Levy, M.: Comment on “significance of the highest occupied kohn-sham eigenvalue”. Phys. Rev. B 56, 16021–16028 (1997). doi:10.1103/PhysRevB.56.16021ADSCrossRefGoogle Scholar
  22. 22.
    Lundqvist, S., March, N.H. (eds.): Theory of the Inhomogeneous Electron Gas. Springer, New York (1983). doi:10.1007/978-1-4899-0415-7Google Scholar
  23. 23.
    Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. The International Series of Monographs on Chemistry. Oxford University Press, New York (1989)Google Scholar
  24. 24.
    Argaman, N., Makov, G.: Density functional theory: an introduction. Am. J. Phys. 68(1), 69–79 (2000). doi:10.1119/1.19375ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    von Barth, U., Hedin, L.: A local exchange-correlation potential for the spin polarized case. J. Phys. C: Solid State Phys. 5(13), 1629–1642 (1972). doi:10.1088/0022-3719/5/13/012ADSCrossRefGoogle Scholar
  26. 26.
    Rajagopal, A.K., Callaway, J.: Inhomogeneous electron gas. Phys. Rev. B 7, 1912–1919 (1973). doi:10.1103/PhysRevB.7.1912ADSCrossRefGoogle Scholar
  27. 27.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981). doi:10.1103/PhysRevB.23.5048ADSCrossRefGoogle Scholar
  28. 28.
    Ceperley, D.: Ground state of the fermion one-component plasma: a monte carlo study in two and three dimensions. Phys. Rev. B 18, 3126–3138 (1978). doi:10.1103/PhysRevB.18.3126ADSCrossRefGoogle Scholar
  29. 29.
    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980). doi:10.1103/PhysRevLett.45.566ADSCrossRefGoogle Scholar
  30. 30.
    Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58(8), 1200–1211 (1980). doi:10.1139/p80-159ADSCrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). doi:10.1103/PhysRevB.45.13244ADSCrossRefGoogle Scholar
  32. 32.
    Hood, R., Chou, M., Williamson, A., Rajagopal, G., Needs, R.: Exchange and correlation in silicon. Phys. Rev. B 57, 8972–8982 (1998). doi:10.1103/PhysRevB.57.8972ADSCrossRefGoogle Scholar
  33. 33.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865ADSCrossRefGoogle Scholar
  34. 34.
    Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange correlation hole of a manyelectron system. Phys. Rev. B 54, 16533–16539 (1996). doi:10.1103/PhysRevB.54.16533ADSCrossRefGoogle Scholar
  35. 35.
    Markevich, V.P., Leonard, S., Peaker, A.R., Hamilton, B., Marinopoulos, A.G., Coutinho, J.: Titanium in silicon: lattice positions and electronic properties. Appl. Phys. Lett. 104(15), 152105 (2014). doi:10.1063/1.4871702ADSCrossRefGoogle Scholar
  36. 36.
    Harrison, W.A.: Pseudopotentials in the theory of metals. Pseudopotentials in the Theory of Metals. W. A. Benjamim, New York (1966)Google Scholar
  37. 37.
    Brust, D.: The pseudopotential method and the single-particle electronic excitation spectra of crystals. In: Methods in Computational Physics, vol. 8, p. 33. Academic Press, New York (1968)Google Scholar
  38. 38.
    Heine, V.: The pseudopotential concept. In: Ehrenreich, H., Seitz, F., Turnbull, D. (eds.) Solid State Physics vol. 24, pp. 1–36. Academic Press (1970). doi:10.1016/S0081-1947(08)60069-7Google Scholar
  39. 39.
    Stoneham, A.M.: Theory of Defects in Solids. Oxford University Press, London (1975)zbMATHGoogle Scholar
  40. 40.
    Pickett, W.E.: Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 9(3), 115–197 (1989). doi:10.1016/0167-7977(89)90002-6ADSCrossRefGoogle Scholar
  41. 41.
    Bachelet, G.B., Hamann, D.R., Schlüter, M.: Pseudopotentials that work: from h to pu. Phys. Rev. B 26, 4199–4228 (1982). doi:10.1103/PhysRevB.26.4199ADSCrossRefGoogle Scholar
  42. 42.
    Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). doi:10.1103/PhysRevB.43.1993ADSCrossRefGoogle Scholar
  43. 43.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). doi:10.1103/PhysRevB.41.7892ADSCrossRefGoogle Scholar
  44. 44.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758ADSCrossRefGoogle Scholar
  45. 45.
    Baldereschi, A.: Mean-value point in the brillouin zone. Phys. Rev. B 7, 5212–5215 (1973). doi:10.1103/PhysRevB.7.5212ADSCrossRefGoogle Scholar
  46. 46.
    Chadi, D.J., Cohen, M.L.: Electronic structure of Hg1−xCdx Te alloys and charge density calculations using representative k points. Phys. Rev. B 7, 692–699 (1973). doi:10.1103/PhysRevB.7.692ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Monkhorst, H.J., Pack, J.D.: Special points for brillouinzone integrations. Phys. Rev. B 13, 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Pack, J.D., Monkhorst, H.J.: “Special points for brillouinzone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977). doi:10.1103/PhysRevB.16.1748ADSCrossRefGoogle Scholar
  49. 49.
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947). doi:10.1103/PhysRev.71.809ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Martienssen, W., Warlimont, H. (eds.): Springer Handbook of Condensed Matter and Materials Data. Springer, Berlin/Heidelberg (2005). doi:10.1007/3-540-30437-1Google Scholar
  51. 51.
    Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340–343 (1939). doi:10.1103/PhysRev.56.340ADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Epstein, S.T., Hurley, A.C., Wyatt, R.E., Parr, R.G.: Integrated and integral hellmann–feynman formulas. J. Chem. Phys. 47(4), 1275–1286 (1967). doi:10.1063/1.1712080ADSCrossRefGoogle Scholar
  53. 53.
    Watkins, G.D., Brower, K.L.: Epr observation of the isolated interstitial carbon atom in silicon. Phys. Rev. Lett. 36, 1329–1332 (1976). doi:10.1103/PhysRevLett.36.1329ADSCrossRefGoogle Scholar
  54. 54.
    Leary, P., Jones, R., Öberg, S., Torres, V.J.B.: Dynamic properties of interstitial carbon and carbon carbon pair defects in silicon. Phys. Rev. B 55, 2188–2194 (1997). doi:10.1103/PhysRevB.55.2188ADSCrossRefGoogle Scholar
  55. 55.
    Zirkelbach, F., Stritzker, B., Nordlund, K., Lindner, J.K.N., Schmidt, W.G., Rauls, E.: Defects in carbon implanted silicon calculated by classical potentials and first-principles methods. Phys. Rev. B 82, 094110 (2010). doi:10.1103/PhysRevB.82.094110ADSCrossRefGoogle Scholar
  56. 56.
    Bean, A.R., Newman, R.C.: Low temperature electron irradiation of silicon containing carbon. Solid State Commun. 8(3), 175–177 (1970). doi:10.1016/0038-1098(70)90074-8ADSCrossRefGoogle Scholar
  57. 57.
    Chelikowsky, J.R., Cohen, M.L.: Electronic structure of silicon. Phys. Rev. B 10, 5095–5107 (1974). doi:10.1103/PhysRevB.10.5095ADSCrossRefGoogle Scholar
  58. 58.
    Kohn, W.: Phys. Rev. 98, 915 (1955)ADSCrossRefGoogle Scholar
  59. 59.
    Kohn, W.: Solid State Phys. 5, 257 (1957)Google Scholar
  60. 60.
    Ramdas, A.K., Rodriguez, S.: Spectroscopy of the solidstate analogues of the hydrogen atom: donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981). doi:10.1088/0034-4885/44/12/002ADSCrossRefGoogle Scholar
  61. 61.
    Fletcher, R.C., Yager, W.A., Pearson, G.L., Holden, A.N., Read, W.T., Merritt, F.R.: Spin resonance of donors in silicon. Phys. Rev. 94, 1392–1393 (1954). doi:10.1103/PhysRev.94.1392.2ADSCrossRefGoogle Scholar
  62. 62.
    Feher, G.: Electron spin resonance experiments on donors in silicon. i. electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959). doi:10.1103/PhysRev.114.1219Google Scholar
  63. 63.
    Watkins, G.D., Ham, F.S.: Electron paramagnetic resonance studies of a system with orbital degeneracy: the lithium donor in silicon. Phys. Rev. B 1, 4071–4098 (1970). doi:10.1103/PhysRevB.1.4071ADSCrossRefGoogle Scholar
  64. 64.
    Wünstel, K., Wagner, P.: Interstitial iron and ironacceptor pairs in silicon. Appl. Phys. A 27(4), 207–212 (1982). doi:10.1007/BF00619081ADSCrossRefGoogle Scholar
  65. 65.
    Awadelkarim, O.O., Monemar, B.: A study of ironrelated centers in heavily boron-doped silicon by deep-level transient spectroscopy. J. Appl. Phys. 64(11), 6306–6310 (1988). doi:10.1063/1.342090ADSCrossRefGoogle Scholar
  66. 66.
    Istratov, A.A., Hieslmair, H., Weber, E.R.: Iron and its complexes in silicon. Appl. Phys. A 69(1), 13–44 (1999). doi:10.1007/s003390050968ADSCrossRefGoogle Scholar
  67. 67.
    Sanati, M., Szwacki, N., Estreicher, S.: Interstitial fe in si and its interactions with hydrogen and shallow dopants. Phys. Rev. B 76:125,204, 125204 (2007). doi:10.1103/ PhysRevB.76.125204Google Scholar
  68. 68.
    Backlund, D.J., Estreicher, S.K.: Ti, fe, and ni in si and their interactions with the vacancy and the a center: a theoretical study. Phys. Rev. B 81, 235213 (2010). doi:10.1103/PhysRevB.81.235213ADSCrossRefGoogle Scholar
  69. 69.
    Ludwig, G., Woodbury, H.: Electronic structure of transition metal ions in a tetrahedral lattice. Phys. Rev. Lett. 5, 98–100 (1960). doi:10.1103/PhysRevLett.5.98ADSCrossRefGoogle Scholar
  70. 70.
    Katayama-Yoshida, H., Zunger, A.: Localization and magnetism of an interstitial iron impurity in silicon. Phys. Rev. Lett. 53, 1256–1259 (1984). doi:10.1103/PhysRevLett.53.1256ADSCrossRefGoogle Scholar
  71. 71.
    Beeler, F., Andersen, O., Scheffler, M.: Theoretical evidence for low-spin ground states of early interstitial and late substitutional 3d transition-metal ions in silicon. Phys. Rev. Lett. 55, 1498–1501 (1985). doi:10.1103/PhysRevLett.55.1498ADSCrossRefGoogle Scholar
  72. 72.
    Katayama-Yoshida, H., Zunger, A.: Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon. Phys. Rev. B 31, 7877–7899 (1985). doi:10.1103/PhysRevB.31.7877ADSCrossRefGoogle Scholar
  73. 73.
    Woodbury, H., Ludwig, G.: Spin resonance of transition metals in silicon. Phys. Rev. 117, 102–108 (1960). doi:10.1103/PhysRev.117.102ADSCrossRefGoogle Scholar
  74. 74.
    Yoshida, Y., Ogawa, S., Arikawa, K.: Direct observation of substitutional Fe atoms in Si and SOI wafers at 1273 k. Physica B: Condensed Matter 340–342, 605–608 (2003). doi:10.1016/j.physb.2003.09.125CrossRefGoogle Scholar
  75. 75.
    Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Shimura, F., Yoshida, A., Diao, X., Ogawa, H., Yano, Y., Ambe, F.: In-beam Mössbauer study of interstitial and substitutional 57mn/57fe jumps in si. Defect Diffus. Forum 194–199, 611–616 (2001). doi:10.4028/www.scientific.net/DDF.194-199.611 CrossRefGoogle Scholar
  76. 76.
    Gunnlaugsson, H.P., Weyer, G., Dietrich, M., collaboration, I., Fanciulli, M., Bharuth-Ram, K., Sielemann, R.: Charge state dependence of the diffusivity of interstitial Fe in silicon detected by mössbauer spectroscopy. Appl. Phys. Lett. 80(15), 2657–2659 (2002). doi:10.1063/1.1469216Google Scholar
  77. 77.
    Wahl, U., Correia, J., Rita, E., Araújo, J., Soares, J.: Lattice sites of implanted fe in si. Phys. Rev. B 72, 014115 (2005). doi:10.1103/PhysRevB.72.014115ADSCrossRefGoogle Scholar
  78. 78.
    Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Yoshida, A., Ueno, H., Shimura, F., Ambe, F.: In situ observation of substitutional and interstitial fe atoms in si after gev-implantation: an in-beam mössbauer study. Physica B: Condens. Matter 376–377, 69–72 (2006). doi: 10.1016/j.physb.2005.12.019CrossRefGoogle Scholar
  79. 79.
    Yoshida, Y., Suzuki, K., Kobayashi, Y., Nagatomo, T., Akiyama, Y., Yukihira, K., Hayakawa, K., Ueno, H., Yoshimi, A., Nagae, D., Asahi, K., Langouche, G.: 57fe charge states in mc-si solar cells under light illumination after gev-implantation of 57Mn. Hyperfine Interact. 204(1–3), 133–137 (2012). doi:10.1007/s10751-011-0424-3ADSCrossRefGoogle Scholar
  80. 80.
    Weyer, G., Burchard, A., Fanciulli, M., Fedoseyev, V., Gunnlaugsson, H., Mishin, V., Sielemann, R.: The electronic configuration of substitutional fe in silicon. Physica B: Condens. Matter 273–274, 363–366 (1999). doi:10.1016/S0921-4526(99)00478-0CrossRefGoogle Scholar
  81. 81.
    Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975). doi:10.1103/PhysRevB.12.3060ADSCrossRefGoogle Scholar
  82. 82.
    Schwarz, K., Blaha, P., Madsen, G.: Electronic structure calculations of solids using the {WIEN2k} package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002). doi:10.1016/S0010-4655(02)00206-0ADSzbMATHCrossRefGoogle Scholar
  83. 83.
    Kübler, J., Kumm, A.E., Overhof, H., Schwalback, O., Hartick, M., Kankeleit, E., Keck, B., Wende, L., Seilemann, R.: Isomer-shift of interstitial and substitutional iron in silicon and germanium. Z. Phys. B 92, 155–162 (1993). doi: 10.1007/BF01312171ADSCrossRefGoogle Scholar
  84. 84.
    Elzain, M., Al-Harthi, S., Gismelseed, A., Al-Rawas, A., Yousif, A., Widatallah, H., Al-Barwani, M.: The magnetic and hyperfine properties of iron in silicon carbide. Hyperfine Interact. 226(1–3), 281–287 (2014). doi: 10.1007/s10751-013-0946-yADSCrossRefGoogle Scholar
  85. 85.
    You, Z., Gong, M., Chen, J., Corbett, J.W.: Iron-vacancy-oxygen complex in silicon. J. Appl. Phys. 63(2), 324–326 (1988). doi:10.1063/1.340297ADSCrossRefGoogle Scholar
  86. 86.
    Komarov, B.: Special features of radiation-defect annealing in silicon p-n structures: the role of fe impurity atoms. Semiconductors 38(9), 1041–1046 (2004). doi:10.1134/1.1797482ADSCrossRefGoogle Scholar
  87. 87.
    Tang, C.K., Vines, L., Svensson, B.G., Monakhov, E.V.: Deep level transient spectroscopy on proton-irradiated Fecontaminated p-type silicon. Physica Status Solidi (C) 9(10–11), 1992–1995 (2012). doi:10.1002/pssc.201200163ADSCrossRefGoogle Scholar
  88. 88.
    Tang, C.K., Vines, L., Markevich, V.P., Svensson, B.G., Monakhov, E.V.: Divacancy-iron complexes in silicon. J. Appl. Phys. 113(4), 044503 (2013). doi:10.1063/1.4788695ADSCrossRefGoogle Scholar
  89. 89.
    Estreicher, S., Sanati, M., Gonzalez Szwacki, N.: Iron in silicon: interactions with radiation defects, carbon, and oxygen. Phys. Rev. B 77, 125214 (2008). doi:10.1103/PhysRevB.77.125214ADSCrossRefGoogle Scholar
  90. 90.
    Watkins, G.D.: Deep Centers in Semiconductors, 2nd edn., chap. 3, p. 177. Gordon and Breach Science Publishers, New York (1992)Google Scholar
  91. 91.
    Zunger, A., Lindefelt, U.: Theory of substitutional and interstitial 3d impurities in silicon. Phys. Rev. B 26, 5989–5992 (1982). doi:10.1103/PhysRevB.26.5989ADSCrossRefGoogle Scholar
  92. 92.
    Flynn, C.P.: Point Defects and Diffusion. Oxford University Press, Glasgow (1972)Google Scholar
  93. 93.
    Hwang, G.S., Goddard III, W.A.: Diffusion and dissociation of neutral divacancies in crystalline silicon. Phys. Rev. B 65, 233205 (2002). doi:10.1103/PhysRevB.65.233205ADSCrossRefGoogle Scholar
  94. 94.
    Watkins, G.D., Corbett, J.W.: Defects in irradiated silicon: electron paramagnetic resonance of the divacancy. Phys. Rev. 138, A543–A555 (1965). doi:10.1103/PhysRev.138.A543ADSCrossRefGoogle Scholar
  95. 95.
    Heiser, T., Mesli, A.: Charge-state-dependent diffusion and carrier-emission-limited drift of iron in silicon. Phys. Rev. Lett. 68, 978–981 (1992). doi:10.1103/PhysRevLett.68.978ADSCrossRefGoogle Scholar
  96. 96.
    Takahashi, H., Suezawa, M., Sumino, K.: Charge-state-dependent activation energy for diffusion of iron in silicon. Phys. Rev. B 46, 1882–1885 (1992). doi:10.1103/PhysRevB.46.1882ADSCrossRefGoogle Scholar
  97. 97.
    Estreicher, S.K., Backlund, D.J., Carbogno, C., Scheffler, M.: Activation energies for diffusion of defects in silicon: the role of the exchange correlation functional. Angewandte Chemie International Edition 50(43), 10221–10225 (2011). doi:10.1002/anie.201100733CrossRefGoogle Scholar
  98. 98.
    Katayama-Yoshida, H., Hamada, N.: Superhyperfine interaction and spin-lattice relaxation of an interstitial iron impurity in silicon. Phys. Rev. B 35, 407–410 (1987). doi:10.1103/PhysRevB.35.407ADSCrossRefGoogle Scholar
  99. 99.
    Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D.D., Henkelman, G.: A generalized solidstate nudged elastic band method. J. Chem. Phys. 136, 074103 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    Coutinho, J., Markevich, V.P., Peaker, A.R., Hamilton, B., Lastovskii, S.B., Murin, L.I., Svensson, B.J., Rayson, M.J., Briddon, P.R.: Electronic and dynamical properties of the silicon trivacancy. Phys. Rev. B 86, 174101 (2012). doi:10.1103/PhysRevB.86.174101ADSCrossRefGoogle Scholar
  101. 101.
    Markevich, V.P., Peaker, A.R., Lastovskii, S.B., Murin, L.I., Coutinho, J., Torres, V.J.B., Briddon, P.R., Dobaczewski, L., Monakhov, E.V., Svensson, B.G.: Trivacancy and trivacancy-oxygen complexes in silicon: experiments and ab initio modeling. Phys. Rev. B 80, 235207 (2009). doi:10.1103/PhysRevB.80.235207ADSCrossRefGoogle Scholar
  102. 102.
    Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)Google Scholar
  103. 103.
    Estreicher, S.K., Sanati, M., West, D., Ruymgaart, F.: Thermodynamics of impurities in semiconductors. Phys. Rev. B 70, 125209 (2004). doi:10.1103/PhysRevB.70.125209ADSCrossRefGoogle Scholar
  104. 104.
    Rohatgi, A., Davis, J.R., Hopkins, R.H., Rai-Choudhury, P., McMullin, P.G., McCormick, J.R.: Solid-State Electron. 23, 415–422 (1980). doi:10.1016/0038-1101(80)90076-3ADSCrossRefGoogle Scholar
  105. 105.
    Kolkovsky, V., Scheffler, L., Weber, J.: A re-examination of the interstitial ti levels in si. Phys. Stat. Sol. (C) 9(10–11), 1996–1999 (2012). doi:10.1002/pssc.201200141Google Scholar
  106. 106.
    Hocine, S., Mathiot, D.: Titanium diffusion in silicon. Appl. Phys. Lett. 53(14), 1269–1271 (1988). doi:10.1063/1.100446ADSCrossRefGoogle Scholar
  107. 107.
    Baraff, G.A., Schlüter, M.: Electronic structure, total energies, and abundances of the elementary point defects in gaas. Phys. Rev. Lett. 55, 1327–1330 (1985). doi:10.1103/PhysRevLett.55.1327ADSCrossRefGoogle Scholar
  108. 108.
    Qian, G.X., Martin, R.M., Chadi, D.J.: Firstprinciples study of the atomic reconstructions and energies of ga- and as-stabilized gaas(100) surfaces. Phys. Rev. B 38, 7649–7663 (1988). doi:10.1103/PhysRevB.38.7649ADSCrossRefGoogle Scholar
  109. 109.
    Northrup, J.E.: Energetics of gaas island formation on si(100). Phys. Rev. Lett. 62, 2487–2490 (1989). doi:10.1103/PhysRevLett.62.2487ADSCrossRefGoogle Scholar
  110. 110.
    Van de Walle, C.G., Martin, R.M.: Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35, 8154–8165 (1987). doi:10.1103/PhysRevB.35.8154ADSCrossRefGoogle Scholar
  111. 111.
    Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995). doi:10.1103/PhysRevB.51.4014ADSCrossRefGoogle Scholar
  112. 112.
    Komsa, H.P., Rantala, T., Pasquarello, A.: Comparison between various finite-size supercell correction schemes for charged defect calculations. Physica B: Condens. Matter 407(15), 3063–3067 (2012). doi:10.1016/j.physb.2011.08.028ADSCrossRefGoogle Scholar
  113. 113.
    Goss, J.P., Shaw, M.J., Briddon, P.R.: Marker-method calculations for electrical levels using gaussian-orbital basis sets. In: Drabold, D.A., Estreicher, S.K. (eds.) Theory of Defects in Semiconductors. Topics in Applied Physics, vol. 104, pp. 69–94. Springer, Berlin (2007). doi:10.1007/11690320_4Google Scholar
  114. 114.
    Resende, A., Jones, R., Öberg, S., Briddon, P.R.: Calculations of electrical levels of deep centers: application to auh and ag-h defects in silicon. Phys. Rev. Lett. 82, 2111–2114 (1999). doi:10.1103/PhysRevLett.82.2111ADSCrossRefGoogle Scholar
  115. 115.
    Jeong, J.W., Oshiyama, A.: Atomic and electronic structures of a boron impurity and its diffusion pathways in crystalline si. Phys. Rev. B 64, 235204 (2001). doi:10.1103/PhysRevB.64.235204ADSCrossRefGoogle Scholar
  116. 116.
    Santos, P., Coutinho, J., Torres, V.J.B., Rayson, M.J., Briddon, P.R.: Hydrogen passivation of titanium impurities in silicon: effect of doping conditions. Appl. Phys. Lett. 105(3), 032108 (2014). doi:10.1063/1.4891575ADSCrossRefGoogle Scholar
  117. 117.
    Backlund, D.J., Estreicher, S.K.: Structural, electrical, and vibrational properties of ti-h and ni-h complexes in si. Phys. Rev. B 82, 155208 (2010). doi:10.1103/PhysRevB.82.155208ADSCrossRefGoogle Scholar
  118. 118.
    Kolkovsky, V., Scheffler, L., Weber, J.: Transition metals (ti and co) in silicon and their complexes with hydrogen: a lapplace dlts study. Physica B 439, 24–28 (2014). doi:10.1016/j.physb.2013.11.005ADSCrossRefGoogle Scholar
  119. 119.
    Leonard, S., Markevich, V.P., Peaker, A.R., Hamilton, B.: Passivation of titanium by hydrogen in silicon. Appl. Phys. Lett. 103(13), 132103 (2013). doi:10.1063/1.4822329ADSCrossRefGoogle Scholar
  120. 120.
    Jost, W., Weber, J.: Titanium-hydrogen defects in silicon. Phys. Rev. B 54, R11038–R11041 (1996). doi:10.1103/PhysRevB.54.R11038ADSCrossRefGoogle Scholar
  121. 121.
    Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford (1954)zbMATHGoogle Scholar
  122. 122.
    Maradudin, A.A., Montroll, E.W., Weiss, G.H.: Lattice Dynamics in the Harmonic Approximation. Academic, New York (1963)Google Scholar
  123. 123.
    Srivastava, G.P. (ed.): The Physics of Phonons. Adam Hilger, Bristol (1990)Google Scholar
  124. 124.
    Coutinho, J., Jones, R., Briddon, P.R., Öberg, S., Murin, L.I., Markevich, V.P., Lindström, J.L.: Interstitial carbon-oxygen center and hydrogen related shallow thermal donors in Si. Phys. Rev. B 65, 014109 (2001). doi:10.1103/PhysRevB.65.014109ADSCrossRefGoogle Scholar
  125. 125.
    Jones, R., Öberg, S.: Oxygen frustration and the interstitial carbon-oxygen complex in si. Phys. Rev. Lett. 68, 86–89 (1992). doi:10.1103/PhysRevLett.68.86ADSCrossRefGoogle Scholar
  126. 126.
    Coutinho, J., Andersen, O., Dobaczewski, L., Bonde Nielsen, K., Peaker, A.R., Jones, R., Öberg, S., Briddon, P.R.: Effect of stress on the energy levels of the vacancy-oxygen-hydrogen complex in si. Phys. Rev. B 68, 184106 (2003). doi:10.1103/PhysRevB.68.184106ADSCrossRefGoogle Scholar
  127. 127.
    Panthani, M.G., Korgel, B.A.: Nanocrystals for electronics. Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012). doi:10.1146/annurev-chembioeng-062011-081040CrossRefGoogle Scholar
  128. 128.
    Beard, M.C., Knutsen, K.P., Yu, P., Luther, J.M., Song, Q., Metzger, W.K., Ellingson, R.J., Nozik, A.J.: Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007). doi:10.1021/nl071486lADSCrossRefGoogle Scholar
  129. 129.
    Holman, Z.C., Liu, C.Y., Kortshagen, U.R.: Germanium and silicon nanocrystal thin-film field-effect transistors from solution. Nano Lett. 10, 2661–2666 (2010). doi:10.1021/nl101413dADSCrossRefGoogle Scholar
  130. 130.
    Cheng, K.Y., Anthony, R., Kortshagen, U.R., Holmes, R.J.: High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952–1956 (2011). doi:10.1021/nl2001692ADSCrossRefGoogle Scholar
  131. 131.
    Kessler, V., Gautam, D., Hülser, T., Spree, M., Theissmann, R., Winterer, M., Wiggers, H., Schierning, G., Schmechel, R.: Thermoelectric properties of nanocrystalline silicon from a scaled-up synthesis plant. Adv. Eng. Mater. 15(5), 379–385 (2013). doi:10.1002/adem.201200233CrossRefGoogle Scholar
  132. 132.
    Gupta, A., Swihart, M.T., Wiggers, H.: Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19(5), 696–703 (2009). doi:10.1002/adfm.200801548CrossRefGoogle Scholar
  133. 133.
    Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., Korgel, B.A.: Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24(2), 393–401 (2012). doi:10.1021/cm2032866CrossRefGoogle Scholar
  134. 134.
    Carvalho, A., Coutinho, J., Barroso, M., Silva, E.L., Öberg, S., Rayson, M., Briddon, P.R.: Electronic structure modification of si nanocrystals with f4-tcnq. Phys. Rev. B 84, 125437 (2011). doi:10.1103/PhysRevB.84.125437ADSCrossRefGoogle Scholar
  135. 135.
    Chelikowsky, J.R., Alemany, M.M.G., Chan, T.L., Dalpian, G.M.: Computational studies of doped nanostructures. Rep. Progress Phys. 74, 046501 (2011). doi:10.1088/0034-4885/74/4/046501ADSCrossRefGoogle Scholar
  136. 136.
    Cantele, G., Degoli, E., Luppi, E., Magri, R., Ninno, D., Iadonisi, G., Ossicini, S.: Firstprinciples study of n- and p-doped silicon nanoclusters. Phys. Rev. B 72, 113303 (2005). doi:10.1103/PhysRevB.72.113303ADSCrossRefGoogle Scholar
  137. 137.
    Du, M.H., Erwin, S.C., Efros, A.L.: Trapped-dopant model of doping in semiconductor nanocrystals. Nano Lett. 8, 2878–2882 (2008). doi:10.1021/nl8016169ADSCrossRefGoogle Scholar
  138. 138.
    Chan, T.L., Chelikowsky, J.R.: Controlling diffusion of lithium in silicon nanostructures. Nano Lett. 10(3), 821–825 (2010). doi:10.1021/nl903183nADSCrossRefGoogle Scholar
  139. 139.
    Gali, A., Vörös, M., Rocca, D., Zimanyi, G.T., Galli, G.: High-energy excitations in silicon nanoparticles. Nano Lett. 9(11), 3780–3785 (2009). doi:10.1021/nl901970uCrossRefGoogle Scholar
  140. 140.
    Pereira, R.N., Coutinho, J., Niesar, S., Oliveira, T.A., Aigner, W., Wiggers, H., Rayson, M.J., Briddon, P.R., Brandt, M.S., Stutzmann, M.: Resonant electronic coupling enabled by small molecules in nanocrystal solids. Nano Lett. 14(7), 3817–3826 (2014). doi:10.1021/nl500932qADSCrossRefGoogle Scholar
  141. 141.
    Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I.N., Gregorkiewicz, T.: Spaceseparated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat. Photon. 2(2), 105–109 (2008). doi:10.1038/nphoton.2007.279ADSCrossRefGoogle Scholar
  142. 142.
    Guerra, R., Ossicini, S.: Role of strain in interacting silicon nanoclusters. Phys. Rev. B 87, 165441 (2013). doi:10.1103/PhysRevB.87.165441ADSCrossRefGoogle Scholar
  143. 143.
    Wooten, F., Winer, K., Weaire, D.: Computer generation of structural models of amorphous si and ge. Phys. Rev. Lett. 54, 1392–1395 (1985). doi:10.1103/PhysRevLett.54.1392ADSCrossRefGoogle Scholar
  144. 144.
    Seino, K., Bechstedt, F., Kroll, P.: Tunneling of electrons between si nanocrystals embedded in a sio2 matrix. Phys. Rev. B 86, 075312 (2012). doi:10.1103/PhysRevB.86.075312ADSCrossRefGoogle Scholar
  145. 145.
    Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T.A., Norris, D.J.: Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). doi:10.1038/nature03832ADSCrossRefGoogle Scholar
  146. 146.
    Norris, D.J., Efros, A.L., Erwin, S.C.: Doped nanocrystals. Science 319, 1776–1779 (2008). doi:10.1126/science.1143802ADSCrossRefGoogle Scholar
  147. 147.
    Yu, Y., Bosoy, C.A., Hessel, C.M., Smilgies, D.M., Korgel, B.A.: Silicon nanocrystal superlattices. Chem. Phys. Chem. 14(1), 84–87 (2013). doi:10.1002/cphc.201200738Google Scholar
  148. 148.
    Yu, Y., Bosoy, C.A., Smilgies, D.M., Korgel, B.A.: Self-assembly and thermal stability of binary superlattices of gold and silicon nanocrystals. J. Phys. Chem. Lett. 4, 3677–3682 (2013). doi:10.1021/jz401964sCrossRefGoogle Scholar
  149. 149.
    Fujii, M., Mimura, A., Hayashi, S., Yamamoto, Y., Murakami, K.: Hyperfine structure of the electron spin resonance of phosphorus-doped si nanocrystals. Phys. Rev. Lett. 89, 206805 (2002). doi:10.1103/PhysRevLett.89.206805ADSCrossRefGoogle Scholar
  150. 150.
    Pereira, R.N., Stegner, A.R., Andlauer, T., Klein, K., Wiggers, H., Brandt, M.S., Stutzmann, M.: Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Phys. Rev. B 79, 161304 (2009). doi:10.1103/PhysRevB.79.161304ADSCrossRefGoogle Scholar
  151. 151.
    Bjork, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4(2), 103–107 (2009). doi:10.1038/nnano.2008.400ADSCrossRefGoogle Scholar
  152. 152.
    Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale cmos channel. Nat. Nanotechnol. 5(2), 133–137 (2010). doi:10.1038/nnano.2009.373ADSCrossRefGoogle Scholar
  153. 153.
    Melnikov, D.V., Chelikowsky, J.R.: Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett. 92, 046802 (2004). doi:10.1103/PhysRevLett.92.046802ADSCrossRefGoogle Scholar
  154. 154.
    Diarra, M., Niquet, Y.M., Delerue, C., Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007). doi:10.1103/PhysRevB.75.045301ADSCrossRefGoogle Scholar
  155. 155.
    Ni, Z., Pi, X., Yang, D.: Doping si nanocrystals embedded in sio2 with p in the framework of density functional theory with p in the framework of density functional theory. Phys. Rev. B 89, 035312 (2014). doi:10.1103/PhysRevB.89.035312ADSCrossRefGoogle Scholar
  156. 156.
    Amato, M., Ossicini, S., Rurali, R.: Band-offset driven efficiency of the doping of sige core-shell nanowires. Nano Lett. 11(2), 594–598 (2011). doi:10.1021/nl103621sADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Physics and I3NUniversity of AveiroAveiroPortugal

Personalised recommendations