Skip to main content

Density Functional Modeling of Defects and Impurities in Silicon Materials

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

Abstract

This is a contribution targeted for early scientists, from both academia and industry, providing the grounds for defect modeling in silicon materials using density functional methods. It starts with a revision of the theoretical framework and tools, including relevant approximations such as the treatment of the exchange-correlation interactions and the use of pseudopotentials. It then describes how to step up from total energies, electron densities and Kohn-Sham states to the actual defect observables. Particular emphasis is given to the calculation of spectroscopic observables such as electrical levels, local vibrational modes, spin densities, migration barriers, and defect response to uniaxial stress. Each of these techniques is accompanied by examples of defect calculations. It is shown how these results can be crucial in unraveling a detailed picture of many complexes, including substitutional and interstitial impurities, dopants, transition metals, carbon, oxygen or hydrogen. In the last section we take a look at some developments in modeling defects in silicon nanostructures. While holding promising optical and magnetic properties, nano-silicon presents many challenges, particularly with regard to defect control, doping and electrical transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    All quantities are expressed in atomic units (unless otherwise specified). In this system of units, \(\hslash \), e, m and 4π ε 0 are taken to be unity, where e, m and ε 0 are the electron charge, electron mass, and the permittivity of vacuum respectively. The unit of length is 0.529 Å, and the unit of energy is 1 Hr = 27. 211 eV.

  2. 2.

    Hydrogen-containing problems are somewhat special, in the sense that electron-phonon coupling effects can be strong and in some cases have to be accounted for explicitly.

References

  1. Bukhori, M., Roy, S., Asenov, A.: Simulation of statistical aspects of charge trapping and related degradation in bulk mosfets in the presence of random discrete dopants. IEEE Trans. Electron Devices 57(4), 795–803 (2010). doi:10.1109/TED.2010.2041859

    Article  ADS  Google Scholar 

  2. Safarian, J., Tranell, G., Tangstad, M.: Processes for upgrading metallurgical grade silicon to solar grade silicon. Energy Procedia 20, 88–97 (2012). doi:10.1016/j.egypro.2012.03.011

    Article  Google Scholar 

  3. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  5. Jones, R.O., Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989). doi:10.1103/RevModPhys.61.689

    Article  ADS  Google Scholar 

  6. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi:10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  7. Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998). doi:10.1103/PhysRevB.58.3641

    Article  ADS  Google Scholar 

  8. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999). doi:10.1103/RevModPhys.71.1085

    Article  ADS  Google Scholar 

  9. Beck, T.L.: Real-space mesh techniques in density-functional theory. Rev. Mod. Phys. 72, 1041–1080 (2000). doi:10.1103/RevModPhys.72.1041

    Article  ADS  Google Scholar 

  10. Rayson, M.J., Briddon, P.R.: Highly efficient method for kohn-sham density functional calculations of 500–10000 atom systems. Phys. Rev. B 80, 205104 (2009). doi:10.1103/PhysRevB.80.205104

    Article  ADS  Google Scholar 

  11. Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014). doi:10.1103/RevModPhys.86.253

    Article  ADS  Google Scholar 

  12. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, Singapore (1955)

    MATH  Google Scholar 

  13. Born, M., Oppenheimer, R.: Zur quantentheorie der molekeln. Annalen der Physik 389, 457–484 (1927). doi:10.1002/andp.19273892002

    Article  ADS  MATH  Google Scholar 

  14. Watkins, G.D.: Deep Centers in Semiconductors, chap. 3 Gordon and Breach, New York (1986)

    Google Scholar 

  15. Probert, M.I.J., Payne, M.C.: Improving the convergence of defect calculations in supercells: an ab initio study of the neutral silicon vacancy. Phys. Rev. B 67, 075204 (2003). doi:10.1103/PhysRevB.67.075204

    Article  ADS  Google Scholar 

  16. Wright, A.F.: Phys. Rev. B 74, 165116 (2006). doi:10.1103/PhysRevB.74.165116

    Article  ADS  Google Scholar 

  17. Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951). doi:10.1103/RevModPhys.23.69

    Article  ADS  MATH  Google Scholar 

  18. Slater, J.C.: The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929). doi:10.1103/PhysRev.34.1293

    Article  ADS  MATH  Google Scholar 

  19. Thijssen, J.M.: Computational Physics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Koopmans, T.: Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1–6), 104–113 (1934). doi:10.1016/S0031-8914(34)90011-2

    Article  ADS  MATH  Google Scholar 

  21. Perdew, J.P., Levy, M.: Comment on “significance of the highest occupied kohn-sham eigenvalue”. Phys. Rev. B 56, 16021–16028 (1997). doi:10.1103/PhysRevB.56.16021

    Article  ADS  Google Scholar 

  22. Lundqvist, S., March, N.H. (eds.): Theory of the Inhomogeneous Electron Gas. Springer, New York (1983). doi:10.1007/978-1-4899-0415-7

    Book  Google Scholar 

  23. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. The International Series of Monographs on Chemistry. Oxford University Press, New York (1989)

    Google Scholar 

  24. Argaman, N., Makov, G.: Density functional theory: an introduction. Am. J. Phys. 68(1), 69–79 (2000). doi:10.1119/1.19375

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. von Barth, U., Hedin, L.: A local exchange-correlation potential for the spin polarized case. J. Phys. C: Solid State Phys. 5(13), 1629–1642 (1972). doi:10.1088/0022-3719/5/13/012

    Article  ADS  Google Scholar 

  26. Rajagopal, A.K., Callaway, J.: Inhomogeneous electron gas. Phys. Rev. B 7, 1912–1919 (1973). doi:10.1103/PhysRevB.7.1912

    Article  ADS  Google Scholar 

  27. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981). doi:10.1103/PhysRevB.23.5048

    Article  ADS  Google Scholar 

  28. Ceperley, D.: Ground state of the fermion one-component plasma: a monte carlo study in two and three dimensions. Phys. Rev. B 18, 3126–3138 (1978). doi:10.1103/PhysRevB.18.3126

    Article  ADS  Google Scholar 

  29. Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980). doi:10.1103/PhysRevLett.45.566

    Article  ADS  Google Scholar 

  30. Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58(8), 1200–1211 (1980). doi:10.1139/p80-159

    Article  ADS  Google Scholar 

  31. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). doi:10.1103/PhysRevB.45.13244

    Article  ADS  Google Scholar 

  32. Hood, R., Chou, M., Williamson, A., Rajagopal, G., Needs, R.: Exchange and correlation in silicon. Phys. Rev. B 57, 8972–8982 (1998). doi:10.1103/PhysRevB.57.8972

    Article  ADS  Google Scholar 

  33. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  34. Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange correlation hole of a manyelectron system. Phys. Rev. B 54, 16533–16539 (1996). doi:10.1103/PhysRevB.54.16533

    Article  ADS  Google Scholar 

  35. Markevich, V.P., Leonard, S., Peaker, A.R., Hamilton, B., Marinopoulos, A.G., Coutinho, J.: Titanium in silicon: lattice positions and electronic properties. Appl. Phys. Lett. 104(15), 152105 (2014). doi:10.1063/1.4871702

    Article  ADS  Google Scholar 

  36. Harrison, W.A.: Pseudopotentials in the theory of metals. Pseudopotentials in the Theory of Metals. W. A. Benjamim, New York (1966)

    Google Scholar 

  37. Brust, D.: The pseudopotential method and the single-particle electronic excitation spectra of crystals. In: Methods in Computational Physics, vol. 8, p. 33. Academic Press, New York (1968)

    Google Scholar 

  38. Heine, V.: The pseudopotential concept. In: Ehrenreich, H., Seitz, F., Turnbull, D. (eds.) Solid State Physics vol. 24, pp. 1–36. Academic Press (1970). doi:10.1016/S0081-1947(08)60069-7

    Google Scholar 

  39. Stoneham, A.M.: Theory of Defects in Solids. Oxford University Press, London (1975)

    MATH  Google Scholar 

  40. Pickett, W.E.: Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 9(3), 115–197 (1989). doi:10.1016/0167-7977(89)90002-6

    Article  ADS  Google Scholar 

  41. Bachelet, G.B., Hamann, D.R., Schlüter, M.: Pseudopotentials that work: from h to pu. Phys. Rev. B 26, 4199–4228 (1982). doi:10.1103/PhysRevB.26.4199

    Article  ADS  Google Scholar 

  42. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). doi:10.1103/PhysRevB.43.1993

    Article  ADS  Google Scholar 

  43. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). doi:10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  44. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  45. Baldereschi, A.: Mean-value point in the brillouin zone. Phys. Rev. B 7, 5212–5215 (1973). doi:10.1103/PhysRevB.7.5212

    Article  ADS  Google Scholar 

  46. Chadi, D.J., Cohen, M.L.: Electronic structure of Hg1−xCdx Te alloys and charge density calculations using representative k points. Phys. Rev. B 7, 692–699 (1973). doi:10.1103/PhysRevB.7.692

    Article  ADS  Google Scholar 

  47. Monkhorst, H.J., Pack, J.D.: Special points for brillouinzone integrations. Phys. Rev. B 13, 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  48. Pack, J.D., Monkhorst, H.J.: “Special points for brillouinzone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977). doi:10.1103/PhysRevB.16.1748

    Article  ADS  Google Scholar 

  49. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947). doi:10.1103/PhysRev.71.809

    Article  ADS  MATH  Google Scholar 

  50. Martienssen, W., Warlimont, H. (eds.): Springer Handbook of Condensed Matter and Materials Data. Springer, Berlin/Heidelberg (2005). doi:10.1007/3-540-30437-1

    Book  Google Scholar 

  51. Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340–343 (1939). doi:10.1103/PhysRev.56.340

    Article  ADS  MATH  Google Scholar 

  52. Epstein, S.T., Hurley, A.C., Wyatt, R.E., Parr, R.G.: Integrated and integral hellmann–feynman formulas. J. Chem. Phys. 47(4), 1275–1286 (1967). doi:10.1063/1.1712080

    Article  ADS  Google Scholar 

  53. Watkins, G.D., Brower, K.L.: Epr observation of the isolated interstitial carbon atom in silicon. Phys. Rev. Lett. 36, 1329–1332 (1976). doi:10.1103/PhysRevLett.36.1329

    Article  ADS  Google Scholar 

  54. Leary, P., Jones, R., Öberg, S., Torres, V.J.B.: Dynamic properties of interstitial carbon and carbon carbon pair defects in silicon. Phys. Rev. B 55, 2188–2194 (1997). doi:10.1103/PhysRevB.55.2188

    Article  ADS  Google Scholar 

  55. Zirkelbach, F., Stritzker, B., Nordlund, K., Lindner, J.K.N., Schmidt, W.G., Rauls, E.: Defects in carbon implanted silicon calculated by classical potentials and first-principles methods. Phys. Rev. B 82, 094110 (2010). doi:10.1103/PhysRevB.82.094110

    Article  ADS  Google Scholar 

  56. Bean, A.R., Newman, R.C.: Low temperature electron irradiation of silicon containing carbon. Solid State Commun. 8(3), 175–177 (1970). doi:10.1016/0038-1098(70)90074-8

    Article  ADS  Google Scholar 

  57. Chelikowsky, J.R., Cohen, M.L.: Electronic structure of silicon. Phys. Rev. B 10, 5095–5107 (1974). doi:10.1103/PhysRevB.10.5095

    Article  ADS  Google Scholar 

  58. Kohn, W.: Phys. Rev. 98, 915 (1955)

    Article  ADS  Google Scholar 

  59. Kohn, W.: Solid State Phys. 5, 257 (1957)

    Article  Google Scholar 

  60. Ramdas, A.K., Rodriguez, S.: Spectroscopy of the solidstate analogues of the hydrogen atom: donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981). doi:10.1088/0034-4885/44/12/002

    Article  ADS  Google Scholar 

  61. Fletcher, R.C., Yager, W.A., Pearson, G.L., Holden, A.N., Read, W.T., Merritt, F.R.: Spin resonance of donors in silicon. Phys. Rev. 94, 1392–1393 (1954). doi:10.1103/PhysRev.94.1392.2

    Article  ADS  Google Scholar 

  62. Feher, G.: Electron spin resonance experiments on donors in silicon. i. electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959). doi:10.1103/PhysRev.114.1219

    Article  Google Scholar 

  63. Watkins, G.D., Ham, F.S.: Electron paramagnetic resonance studies of a system with orbital degeneracy: the lithium donor in silicon. Phys. Rev. B 1, 4071–4098 (1970). doi:10.1103/PhysRevB.1.4071

    Article  ADS  Google Scholar 

  64. Wünstel, K., Wagner, P.: Interstitial iron and ironacceptor pairs in silicon. Appl. Phys. A 27(4), 207–212 (1982). doi:10.1007/BF00619081

    Article  ADS  Google Scholar 

  65. Awadelkarim, O.O., Monemar, B.: A study of ironrelated centers in heavily boron-doped silicon by deep-level transient spectroscopy. J. Appl. Phys. 64(11), 6306–6310 (1988). doi:10.1063/1.342090

    Article  ADS  Google Scholar 

  66. Istratov, A.A., Hieslmair, H., Weber, E.R.: Iron and its complexes in silicon. Appl. Phys. A 69(1), 13–44 (1999). doi:10.1007/s003390050968

    Article  ADS  Google Scholar 

  67. Sanati, M., Szwacki, N., Estreicher, S.: Interstitial fe in si and its interactions with hydrogen and shallow dopants. Phys. Rev. B 76:125,204, 125204 (2007). doi:10.1103/ PhysRevB.76.125204

    Google Scholar 

  68. Backlund, D.J., Estreicher, S.K.: Ti, fe, and ni in si and their interactions with the vacancy and the a center: a theoretical study. Phys. Rev. B 81, 235213 (2010). doi:10.1103/PhysRevB.81.235213

    Article  ADS  Google Scholar 

  69. Ludwig, G., Woodbury, H.: Electronic structure of transition metal ions in a tetrahedral lattice. Phys. Rev. Lett. 5, 98–100 (1960). doi:10.1103/PhysRevLett.5.98

    Article  ADS  Google Scholar 

  70. Katayama-Yoshida, H., Zunger, A.: Localization and magnetism of an interstitial iron impurity in silicon. Phys. Rev. Lett. 53, 1256–1259 (1984). doi:10.1103/PhysRevLett.53.1256

    Article  ADS  Google Scholar 

  71. Beeler, F., Andersen, O., Scheffler, M.: Theoretical evidence for low-spin ground states of early interstitial and late substitutional 3d transition-metal ions in silicon. Phys. Rev. Lett. 55, 1498–1501 (1985). doi:10.1103/PhysRevLett.55.1498

    Article  ADS  Google Scholar 

  72. Katayama-Yoshida, H., Zunger, A.: Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon. Phys. Rev. B 31, 7877–7899 (1985). doi:10.1103/PhysRevB.31.7877

    Article  ADS  Google Scholar 

  73. Woodbury, H., Ludwig, G.: Spin resonance of transition metals in silicon. Phys. Rev. 117, 102–108 (1960). doi:10.1103/PhysRev.117.102

    Article  ADS  Google Scholar 

  74. Yoshida, Y., Ogawa, S., Arikawa, K.: Direct observation of substitutional Fe atoms in Si and SOI wafers at 1273 k. Physica B: Condensed Matter 340–342, 605–608 (2003). doi:10.1016/j.physb.2003.09.125

    Article  ADS  Google Scholar 

  75. Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Shimura, F., Yoshida, A., Diao, X., Ogawa, H., Yano, Y., Ambe, F.: In-beam Mössbauer study of interstitial and substitutional 57mn/57fe jumps in si. Defect Diffus. Forum 194–199, 611–616 (2001). doi:10.4028/www.scientific.net/DDF.194-199.611

    Article  Google Scholar 

  76. Gunnlaugsson, H.P., Weyer, G., Dietrich, M., collaboration, I., Fanciulli, M., Bharuth-Ram, K., Sielemann, R.: Charge state dependence of the diffusivity of interstitial Fe in silicon detected by mössbauer spectroscopy. Appl. Phys. Lett. 80(15), 2657–2659 (2002). doi:10.1063/1.1469216

    Google Scholar 

  77. Wahl, U., Correia, J., Rita, E., Araújo, J., Soares, J.: Lattice sites of implanted fe in si. Phys. Rev. B 72, 014115 (2005). doi:10.1103/PhysRevB.72.014115

    Article  ADS  Google Scholar 

  78. Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Yoshida, A., Ueno, H., Shimura, F., Ambe, F.: In situ observation of substitutional and interstitial fe atoms in si after gev-implantation: an in-beam mössbauer study. Physica B: Condens. Matter 376–377, 69–72 (2006). doi: 10.1016/j.physb.2005.12.019

    Article  ADS  Google Scholar 

  79. Yoshida, Y., Suzuki, K., Kobayashi, Y., Nagatomo, T., Akiyama, Y., Yukihira, K., Hayakawa, K., Ueno, H., Yoshimi, A., Nagae, D., Asahi, K., Langouche, G.: 57fe charge states in mc-si solar cells under light illumination after gev-implantation of 57Mn. Hyperfine Interact. 204(1–3), 133–137 (2012). doi:10.1007/s10751-011-0424-3

    Article  ADS  Google Scholar 

  80. Weyer, G., Burchard, A., Fanciulli, M., Fedoseyev, V., Gunnlaugsson, H., Mishin, V., Sielemann, R.: The electronic configuration of substitutional fe in silicon. Physica B: Condens. Matter 273–274, 363–366 (1999). doi:10.1016/S0921-4526(99)00478-0

    Article  ADS  Google Scholar 

  81. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975). doi:10.1103/PhysRevB.12.3060

    Article  ADS  Google Scholar 

  82. Schwarz, K., Blaha, P., Madsen, G.: Electronic structure calculations of solids using the {WIEN2k} package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002). doi:10.1016/S0010-4655(02)00206-0

    Article  ADS  MATH  Google Scholar 

  83. Kübler, J., Kumm, A.E., Overhof, H., Schwalback, O., Hartick, M., Kankeleit, E., Keck, B., Wende, L., Seilemann, R.: Isomer-shift of interstitial and substitutional iron in silicon and germanium. Z. Phys. B 92, 155–162 (1993). doi: 10.1007/BF01312171

    Article  ADS  Google Scholar 

  84. Elzain, M., Al-Harthi, S., Gismelseed, A., Al-Rawas, A., Yousif, A., Widatallah, H., Al-Barwani, M.: The magnetic and hyperfine properties of iron in silicon carbide. Hyperfine Interact. 226(1–3), 281–287 (2014). doi: 10.1007/s10751-013-0946-y

    Article  ADS  Google Scholar 

  85. You, Z., Gong, M., Chen, J., Corbett, J.W.: Iron-vacancy-oxygen complex in silicon. J. Appl. Phys. 63(2), 324–326 (1988). doi:10.1063/1.340297

    Article  ADS  Google Scholar 

  86. Komarov, B.: Special features of radiation-defect annealing in silicon p-n structures: the role of fe impurity atoms. Semiconductors 38(9), 1041–1046 (2004). doi:10.1134/1.1797482

    Article  ADS  Google Scholar 

  87. Tang, C.K., Vines, L., Svensson, B.G., Monakhov, E.V.: Deep level transient spectroscopy on proton-irradiated Fecontaminated p-type silicon. Physica Status Solidi (C) 9(10–11), 1992–1995 (2012). doi:10.1002/pssc.201200163

    Article  ADS  Google Scholar 

  88. Tang, C.K., Vines, L., Markevich, V.P., Svensson, B.G., Monakhov, E.V.: Divacancy-iron complexes in silicon. J. Appl. Phys. 113(4), 044503 (2013). doi:10.1063/1.4788695

    Article  ADS  Google Scholar 

  89. Estreicher, S., Sanati, M., Gonzalez Szwacki, N.: Iron in silicon: interactions with radiation defects, carbon, and oxygen. Phys. Rev. B 77, 125214 (2008). doi:10.1103/PhysRevB.77.125214

    Article  ADS  Google Scholar 

  90. Watkins, G.D.: Deep Centers in Semiconductors, 2nd edn., chap. 3, p. 177. Gordon and Breach Science Publishers, New York (1992)

    Google Scholar 

  91. Zunger, A., Lindefelt, U.: Theory of substitutional and interstitial 3d impurities in silicon. Phys. Rev. B 26, 5989–5992 (1982). doi:10.1103/PhysRevB.26.5989

    Article  ADS  Google Scholar 

  92. Flynn, C.P.: Point Defects and Diffusion. Oxford University Press, Glasgow (1972)

    Google Scholar 

  93. Hwang, G.S., Goddard III, W.A.: Diffusion and dissociation of neutral divacancies in crystalline silicon. Phys. Rev. B 65, 233205 (2002). doi:10.1103/PhysRevB.65.233205

    Article  ADS  Google Scholar 

  94. Watkins, G.D., Corbett, J.W.: Defects in irradiated silicon: electron paramagnetic resonance of the divacancy. Phys. Rev. 138, A543–A555 (1965). doi:10.1103/PhysRev.138.A543

    Article  ADS  Google Scholar 

  95. Heiser, T., Mesli, A.: Charge-state-dependent diffusion and carrier-emission-limited drift of iron in silicon. Phys. Rev. Lett. 68, 978–981 (1992). doi:10.1103/PhysRevLett.68.978

    Article  ADS  Google Scholar 

  96. Takahashi, H., Suezawa, M., Sumino, K.: Charge-state-dependent activation energy for diffusion of iron in silicon. Phys. Rev. B 46, 1882–1885 (1992). doi:10.1103/PhysRevB.46.1882

    Article  ADS  Google Scholar 

  97. Estreicher, S.K., Backlund, D.J., Carbogno, C., Scheffler, M.: Activation energies for diffusion of defects in silicon: the role of the exchange correlation functional. Angewandte Chemie International Edition 50(43), 10221–10225 (2011). doi:10.1002/anie.201100733

    Article  Google Scholar 

  98. Katayama-Yoshida, H., Hamada, N.: Superhyperfine interaction and spin-lattice relaxation of an interstitial iron impurity in silicon. Phys. Rev. B 35, 407–410 (1987). doi:10.1103/PhysRevB.35.407

    Article  ADS  Google Scholar 

  99. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D.D., Henkelman, G.: A generalized solidstate nudged elastic band method. J. Chem. Phys. 136, 074103 (2012)

    Article  ADS  Google Scholar 

  100. Coutinho, J., Markevich, V.P., Peaker, A.R., Hamilton, B., Lastovskii, S.B., Murin, L.I., Svensson, B.J., Rayson, M.J., Briddon, P.R.: Electronic and dynamical properties of the silicon trivacancy. Phys. Rev. B 86, 174101 (2012). doi:10.1103/PhysRevB.86.174101

    Article  ADS  Google Scholar 

  101. Markevich, V.P., Peaker, A.R., Lastovskii, S.B., Murin, L.I., Coutinho, J., Torres, V.J.B., Briddon, P.R., Dobaczewski, L., Monakhov, E.V., Svensson, B.G.: Trivacancy and trivacancy-oxygen complexes in silicon: experiments and ab initio modeling. Phys. Rev. B 80, 235207 (2009). doi:10.1103/PhysRevB.80.235207

    Article  ADS  Google Scholar 

  102. Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)

    Google Scholar 

  103. Estreicher, S.K., Sanati, M., West, D., Ruymgaart, F.: Thermodynamics of impurities in semiconductors. Phys. Rev. B 70, 125209 (2004). doi:10.1103/PhysRevB.70.125209

    Article  ADS  Google Scholar 

  104. Rohatgi, A., Davis, J.R., Hopkins, R.H., Rai-Choudhury, P., McMullin, P.G., McCormick, J.R.: Solid-State Electron. 23, 415–422 (1980). doi:10.1016/0038-1101(80)90076-3

    Article  ADS  Google Scholar 

  105. Kolkovsky, V., Scheffler, L., Weber, J.: A re-examination of the interstitial ti levels in si. Phys. Stat. Sol. (C) 9(10–11), 1996–1999 (2012). doi:10.1002/pssc.201200141

    Google Scholar 

  106. Hocine, S., Mathiot, D.: Titanium diffusion in silicon. Appl. Phys. Lett. 53(14), 1269–1271 (1988). doi:10.1063/1.100446

    Article  ADS  Google Scholar 

  107. Baraff, G.A., Schlüter, M.: Electronic structure, total energies, and abundances of the elementary point defects in gaas. Phys. Rev. Lett. 55, 1327–1330 (1985). doi:10.1103/PhysRevLett.55.1327

    Article  ADS  Google Scholar 

  108. Qian, G.X., Martin, R.M., Chadi, D.J.: Firstprinciples study of the atomic reconstructions and energies of ga- and as-stabilized gaas(100) surfaces. Phys. Rev. B 38, 7649–7663 (1988). doi:10.1103/PhysRevB.38.7649

    Article  ADS  Google Scholar 

  109. Northrup, J.E.: Energetics of gaas island formation on si(100). Phys. Rev. Lett. 62, 2487–2490 (1989). doi:10.1103/PhysRevLett.62.2487

    Article  ADS  Google Scholar 

  110. Van de Walle, C.G., Martin, R.M.: Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35, 8154–8165 (1987). doi:10.1103/PhysRevB.35.8154

    Article  ADS  Google Scholar 

  111. Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995). doi:10.1103/PhysRevB.51.4014

    Article  ADS  Google Scholar 

  112. Komsa, H.P., Rantala, T., Pasquarello, A.: Comparison between various finite-size supercell correction schemes for charged defect calculations. Physica B: Condens. Matter 407(15), 3063–3067 (2012). doi:10.1016/j.physb.2011.08.028

    Article  ADS  Google Scholar 

  113. Goss, J.P., Shaw, M.J., Briddon, P.R.: Marker-method calculations for electrical levels using gaussian-orbital basis sets. In: Drabold, D.A., Estreicher, S.K. (eds.) Theory of Defects in Semiconductors. Topics in Applied Physics, vol. 104, pp. 69–94. Springer, Berlin (2007). doi:10.1007/11690320_4

    Chapter  Google Scholar 

  114. Resende, A., Jones, R., Öberg, S., Briddon, P.R.: Calculations of electrical levels of deep centers: application to auh and ag-h defects in silicon. Phys. Rev. Lett. 82, 2111–2114 (1999). doi:10.1103/PhysRevLett.82.2111

    Article  ADS  Google Scholar 

  115. Jeong, J.W., Oshiyama, A.: Atomic and electronic structures of a boron impurity and its diffusion pathways in crystalline si. Phys. Rev. B 64, 235204 (2001). doi:10.1103/PhysRevB.64.235204

    Article  ADS  Google Scholar 

  116. Santos, P., Coutinho, J., Torres, V.J.B., Rayson, M.J., Briddon, P.R.: Hydrogen passivation of titanium impurities in silicon: effect of doping conditions. Appl. Phys. Lett. 105(3), 032108 (2014). doi:10.1063/1.4891575

    Article  ADS  Google Scholar 

  117. Backlund, D.J., Estreicher, S.K.: Structural, electrical, and vibrational properties of ti-h and ni-h complexes in si. Phys. Rev. B 82, 155208 (2010). doi:10.1103/PhysRevB.82.155208

    Article  ADS  Google Scholar 

  118. Kolkovsky, V., Scheffler, L., Weber, J.: Transition metals (ti and co) in silicon and their complexes with hydrogen: a lapplace dlts study. Physica B 439, 24–28 (2014). doi:10.1016/j.physb.2013.11.005

    Article  ADS  Google Scholar 

  119. Leonard, S., Markevich, V.P., Peaker, A.R., Hamilton, B.: Passivation of titanium by hydrogen in silicon. Appl. Phys. Lett. 103(13), 132103 (2013). doi:10.1063/1.4822329

    Article  ADS  Google Scholar 

  120. Jost, W., Weber, J.: Titanium-hydrogen defects in silicon. Phys. Rev. B 54, R11038–R11041 (1996). doi:10.1103/PhysRevB.54.R11038

    Article  ADS  Google Scholar 

  121. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford (1954)

    MATH  Google Scholar 

  122. Maradudin, A.A., Montroll, E.W., Weiss, G.H.: Lattice Dynamics in the Harmonic Approximation. Academic, New York (1963)

    Google Scholar 

  123. Srivastava, G.P. (ed.): The Physics of Phonons. Adam Hilger, Bristol (1990)

    Google Scholar 

  124. Coutinho, J., Jones, R., Briddon, P.R., Öberg, S., Murin, L.I., Markevich, V.P., Lindström, J.L.: Interstitial carbon-oxygen center and hydrogen related shallow thermal donors in Si. Phys. Rev. B 65, 014109 (2001). doi:10.1103/PhysRevB.65.014109

    Article  ADS  Google Scholar 

  125. Jones, R., Öberg, S.: Oxygen frustration and the interstitial carbon-oxygen complex in si. Phys. Rev. Lett. 68, 86–89 (1992). doi:10.1103/PhysRevLett.68.86

    Article  ADS  Google Scholar 

  126. Coutinho, J., Andersen, O., Dobaczewski, L., Bonde Nielsen, K., Peaker, A.R., Jones, R., Öberg, S., Briddon, P.R.: Effect of stress on the energy levels of the vacancy-oxygen-hydrogen complex in si. Phys. Rev. B 68, 184106 (2003). doi:10.1103/PhysRevB.68.184106

    Article  ADS  Google Scholar 

  127. Panthani, M.G., Korgel, B.A.: Nanocrystals for electronics. Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012). doi:10.1146/annurev-chembioeng-062011-081040

    Article  Google Scholar 

  128. Beard, M.C., Knutsen, K.P., Yu, P., Luther, J.M., Song, Q., Metzger, W.K., Ellingson, R.J., Nozik, A.J.: Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007). doi:10.1021/nl071486l

    Article  ADS  Google Scholar 

  129. Holman, Z.C., Liu, C.Y., Kortshagen, U.R.: Germanium and silicon nanocrystal thin-film field-effect transistors from solution. Nano Lett. 10, 2661–2666 (2010). doi:10.1021/nl101413d

    Article  ADS  Google Scholar 

  130. Cheng, K.Y., Anthony, R., Kortshagen, U.R., Holmes, R.J.: High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952–1956 (2011). doi:10.1021/nl2001692

    Article  ADS  Google Scholar 

  131. Kessler, V., Gautam, D., Hülser, T., Spree, M., Theissmann, R., Winterer, M., Wiggers, H., Schierning, G., Schmechel, R.: Thermoelectric properties of nanocrystalline silicon from a scaled-up synthesis plant. Adv. Eng. Mater. 15(5), 379–385 (2013). doi:10.1002/adem.201200233

    Article  Google Scholar 

  132. Gupta, A., Swihart, M.T., Wiggers, H.: Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19(5), 696–703 (2009). doi:10.1002/adfm.200801548

    Article  Google Scholar 

  133. Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., Korgel, B.A.: Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24(2), 393–401 (2012). doi:10.1021/cm2032866

    Article  Google Scholar 

  134. Carvalho, A., Coutinho, J., Barroso, M., Silva, E.L., Öberg, S., Rayson, M., Briddon, P.R.: Electronic structure modification of si nanocrystals with f4-tcnq. Phys. Rev. B 84, 125437 (2011). doi:10.1103/PhysRevB.84.125437

    Article  ADS  Google Scholar 

  135. Chelikowsky, J.R., Alemany, M.M.G., Chan, T.L., Dalpian, G.M.: Computational studies of doped nanostructures. Rep. Progress Phys. 74, 046501 (2011). doi:10.1088/0034-4885/74/4/046501

    Article  ADS  Google Scholar 

  136. Cantele, G., Degoli, E., Luppi, E., Magri, R., Ninno, D., Iadonisi, G., Ossicini, S.: Firstprinciples study of n- and p-doped silicon nanoclusters. Phys. Rev. B 72, 113303 (2005). doi:10.1103/PhysRevB.72.113303

    Article  ADS  Google Scholar 

  137. Du, M.H., Erwin, S.C., Efros, A.L.: Trapped-dopant model of doping in semiconductor nanocrystals. Nano Lett. 8, 2878–2882 (2008). doi:10.1021/nl8016169

    Article  ADS  Google Scholar 

  138. Chan, T.L., Chelikowsky, J.R.: Controlling diffusion of lithium in silicon nanostructures. Nano Lett. 10(3), 821–825 (2010). doi:10.1021/nl903183n

    Article  ADS  Google Scholar 

  139. Gali, A., Vörös, M., Rocca, D., Zimanyi, G.T., Galli, G.: High-energy excitations in silicon nanoparticles. Nano Lett. 9(11), 3780–3785 (2009). doi:10.1021/nl901970u

    Article  ADS  Google Scholar 

  140. Pereira, R.N., Coutinho, J., Niesar, S., Oliveira, T.A., Aigner, W., Wiggers, H., Rayson, M.J., Briddon, P.R., Brandt, M.S., Stutzmann, M.: Resonant electronic coupling enabled by small molecules in nanocrystal solids. Nano Lett. 14(7), 3817–3826 (2014). doi:10.1021/nl500932q

    Article  ADS  Google Scholar 

  141. Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I.N., Gregorkiewicz, T.: Spaceseparated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat. Photon. 2(2), 105–109 (2008). doi:10.1038/nphoton.2007.279

    Article  ADS  Google Scholar 

  142. Guerra, R., Ossicini, S.: Role of strain in interacting silicon nanoclusters. Phys. Rev. B 87, 165441 (2013). doi:10.1103/PhysRevB.87.165441

    Article  ADS  Google Scholar 

  143. Wooten, F., Winer, K., Weaire, D.: Computer generation of structural models of amorphous si and ge. Phys. Rev. Lett. 54, 1392–1395 (1985). doi:10.1103/PhysRevLett.54.1392

    Article  ADS  Google Scholar 

  144. Seino, K., Bechstedt, F., Kroll, P.: Tunneling of electrons between si nanocrystals embedded in a sio2 matrix. Phys. Rev. B 86, 075312 (2012). doi:10.1103/PhysRevB.86.075312

    Article  ADS  Google Scholar 

  145. Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T.A., Norris, D.J.: Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). doi:10.1038/nature03832

    Article  ADS  Google Scholar 

  146. Norris, D.J., Efros, A.L., Erwin, S.C.: Doped nanocrystals. Science 319, 1776–1779 (2008). doi:10.1126/science.1143802

    Article  ADS  Google Scholar 

  147. Yu, Y., Bosoy, C.A., Hessel, C.M., Smilgies, D.M., Korgel, B.A.: Silicon nanocrystal superlattices. Chem. Phys. Chem. 14(1), 84–87 (2013). doi:10.1002/cphc.201200738

    Article  Google Scholar 

  148. Yu, Y., Bosoy, C.A., Smilgies, D.M., Korgel, B.A.: Self-assembly and thermal stability of binary superlattices of gold and silicon nanocrystals. J. Phys. Chem. Lett. 4, 3677–3682 (2013). doi:10.1021/jz401964s

    Article  Google Scholar 

  149. Fujii, M., Mimura, A., Hayashi, S., Yamamoto, Y., Murakami, K.: Hyperfine structure of the electron spin resonance of phosphorus-doped si nanocrystals. Phys. Rev. Lett. 89, 206805 (2002). doi:10.1103/PhysRevLett.89.206805

    Article  ADS  Google Scholar 

  150. Pereira, R.N., Stegner, A.R., Andlauer, T., Klein, K., Wiggers, H., Brandt, M.S., Stutzmann, M.: Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Phys. Rev. B 79, 161304 (2009). doi:10.1103/PhysRevB.79.161304

    Article  ADS  Google Scholar 

  151. Bjork, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4(2), 103–107 (2009). doi:10.1038/nnano.2008.400

    Article  ADS  Google Scholar 

  152. Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale cmos channel. Nat. Nanotechnol. 5(2), 133–137 (2010). doi:10.1038/nnano.2009.373

    Article  ADS  Google Scholar 

  153. Melnikov, D.V., Chelikowsky, J.R.: Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett. 92, 046802 (2004). doi:10.1103/PhysRevLett.92.046802

    Article  ADS  Google Scholar 

  154. Diarra, M., Niquet, Y.M., Delerue, C., Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007). doi:10.1103/PhysRevB.75.045301

    Article  ADS  Google Scholar 

  155. Ni, Z., Pi, X., Yang, D.: Doping si nanocrystals embedded in sio2 with p in the framework of density functional theory with p in the framework of density functional theory. Phys. Rev. B 89, 035312 (2014). doi:10.1103/PhysRevB.89.035312

    Article  ADS  Google Scholar 

  156. Amato, M., Ossicini, S., Rurali, R.: Band-offset driven efficiency of the doping of sige core-shell nanowires. Nano Lett. 11(2), 594–598 (2011). doi:10.1021/nl103621s

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Coutinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Coutinho, J. (2015). Density Functional Modeling of Defects and Impurities in Silicon Materials. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_2

Download citation

Publish with us

Policies and ethics