Skip to main content

The Brain Network for Haptic Object Recogniton

  • Chapter
  • First Online:
Pervasive Haptics

Abstract

Humans can haptically identify common three-dimensional objects surprisingly well. What are the neural mechanisms underlying this ability? Previous neuroimaging studies have shown that haptic object recognition involves a distributed network of brain regions beyond the conventional somatosensory cortices. However, the relative contributions of these regions to haptic object recognition are not well understood. In this chapter, I discuss three key hypotheses concerning the brain network underlying haptic object processing and its interaction with visual object processing. The first is that the occipito-temporal cortex, which has been considered to be part of the conventional visual cortex, plays a critical role in the haptic identification of common objects. The second is that distinct brain regions are involved in the haptic processing of two types of feature used for object identification: macro-geometric (e.g., shape) and material (e.g., roughness) properties. The third is that different brain regions are also involved in the visuo-haptic interaction of macro-geometric and material properties. Finally, I discuss some issues that remain to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klatzky, R.L., Lederman, S.J., Metzger, V.A.: Identifying objects by touch: an “expert system”. Percept. Psychophys. 37, 299–302 (1985)

    Article  Google Scholar 

  2. Kilgour, A.R., Lederman, S.J.: Face recognition by hand. Percept. Psychophys. 64, 339–352 (2002)

    Article  Google Scholar 

  3. Lederman, S.J., Kilgour, A., Kitada, R., Klatzky, R.L., Hamilton, C.: Haptic face processing. Can. J. Exp. Psychol. 61, 230–241 (2007)

    Article  Google Scholar 

  4. Lederman, S.J., Klatzky, R.L., Abramowicz, A., Salsman, K., Kitada, R., Hamilton, C.: Haptic recognition of static and dynamic expressions of emotion in the live face. Psychol. Sci. 18, 158–164 (2007)

    Article  Google Scholar 

  5. Kitada, R., Johnsrude, I.S., Kochiyama, T., Lederman, S.J.: Brain networks involved in haptic and visual identification of facial expressions of emotion: an fMRI study. Neuroimage 49, 1677–1689 (2010)

    Article  Google Scholar 

  6. Kitada, R., Okamoto, Y., Sasaki, A.T., Kochiyama, T., Miyahara, M., Lederman, S.J., Sadato, N.: Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind. Front. Hum. Neurosci. 7, 7 (2013)

    Article  Google Scholar 

  7. Kitada, R., Johnsrude, I.S., Kochiyama, T., Lederman, S.J.: Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study. J. Cogn. Neurosci. 21, 2027–2045 (2009)

    Article  Google Scholar 

  8. Kitada, R., Dijkerman, H.C., Soo, G., Lederman, S.J.: Representing human hands haptically or visually from first-person versus third-person perspectives. Perception 39, 236–254 (2010)

    Article  Google Scholar 

  9. Hertenstein, M.J., Keltner, D., App, B., Bulleit, B.A., Jaskolka, A.R.: Touch communicates distinct emotions. Emotion 6, 528–533 (2006)

    Article  Google Scholar 

  10. Kitada, R., Yoshihara, K., Sasaki, A.T., Hashiguchi, M., Kochiyama, T., Sadato, N.: The brain network underlying the recognition of hand gestures in the blind: the supramodal role of the extrastriate body area. J. Neurosci. 34, 10096–10108 (2014)

    Article  Google Scholar 

  11. Gardner, E.P., Johnson, K.O.: 23. Touch. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (eds.) Principles of Neural Science, 5th edn, pp. 498–529. McGraw-Hill, New York (2012)

    Google Scholar 

  12. Sinclair, R.J., Burton, H.: Neuronal activity in the primary somatosensory cortex in monkeys (Macaca mulatta) during active touch of textured surface gratings: responses to groove width, applied force, and velocity of motion. J. Neurophysiol. 66, 153–169 (1991)

    Google Scholar 

  13. Chapman, C.E., Tremblay, F., Jiang, W., Belingard, L., el Meftah, M.: Central neural mechanisms contributing to the perception of tactile roughness. Behav. Brain Res. 135, 225–233 (2002)

    Article  Google Scholar 

  14. Warren, S., Hamalainen, H.A., Gardner, E.P.: Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys. J. Neurophysiol. 56, 598–622 (1986)

    Google Scholar 

  15. Pei, Y.C., Bensmaia, S.J.: The neural basis of tactile motion perception. J. Neurophysiol. 112, 3023–3032 (2014)

    Article  Google Scholar 

  16. Yau, J.M., Connor, C.E., Hsiao, S.S.: Representation of tactile curvature in macaque somatosensory area 2. J. Neurophysiol. 109, 2999–3012 (2013)

    Article  Google Scholar 

  17. Amedi, A., von Kriegstein, K., van Atteveldt, N.M., Beauchamp, M.S., Naumer, M.J.: Functional imaging of human crossmodal identification and object recognition. Exp. Brain Res. 166, 559–571 (2005)

    Article  Google Scholar 

  18. Beauchamp, M.S.: See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr. Opin. Neurobiol. 15, 145–153 (2005)

    Article  Google Scholar 

  19. James, T.W., Kim, S., Fisher, J.S.: The neural basis of haptic object processing. Can. J. Exp. Psychol. 61, 219–229 (2007)

    Article  Google Scholar 

  20. Lacey, S., Sathian, K.: Visuo-haptic multisensory object recognition, categorization, and representation. Front. Psychol. 5, 730 (2014)

    Article  Google Scholar 

  21. Sadato, N., Pascual-Leone, A., Grafman, J., Ibanez, V., Deiber, M.P., Dold, G., Hallett, M.: Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996)

    Article  Google Scholar 

  22. Cohen, L.G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., Honda, M., Sadato, N., Gerloff, C., Catala, M.D., Hallett, M.: Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997)

    Article  Google Scholar 

  23. Sathian, K., Zangaladze, A., Hoffman, J.M., Grafton, S.T.: Feeling with the mind’s eye. Neuroreport 8, 3877–3881 (1997)

    Article  Google Scholar 

  24. Deibert, E., Kraut, M., Kremen, S., Hart Jr., J.: Neural pathways in tactile object recognition. Neurology 52, 1413–1417 (1999)

    Article  Google Scholar 

  25. Puce, A., Allison, T., Asgari, M., Gore, J.C., McCarthy, G.: Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996)

    Google Scholar 

  26. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)

    Google Scholar 

  27. Gauthier, I., Tarr, M.J., Moylan, J., Skudlarski, P., Gore, J.C., Anderson, A.W.: The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 (2000)

    Article  Google Scholar 

  28. Downing, P.E., Jiang, Y., Shuman, M., Kanwisher, N.: A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001)

    Article  Google Scholar 

  29. Peelen, M.V., Downing, P.E.: Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93, 603–608 (2005)

    Article  Google Scholar 

  30. Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392, 598–601 (1998)

    Article  Google Scholar 

  31. Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M.A., Michel, F.: The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000)

    Article  Google Scholar 

  32. Costantini, M., Urgesi, C., Galati, G., Romani, G.L., Aglioti, S.M.: Haptic perception and body representation in lateral and medial occipito-temporal cortices. Neuropsychologia 49, 821–829 (2011)

    Article  Google Scholar 

  33. Wolbers, T., Klatzky, R.L., Loomis, J.M., Wutte, M.G., Giudice, N.A.: Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21, 984–989 (2011)

    Article  Google Scholar 

  34. Reich, L., Szwed, M., Cohen, L., Amedi, A.: A ventral visual stream reading center independent of visual experience. Curr. Biol. 21, 363–368 (2011)

    Article  Google Scholar 

  35. Pietrini, P., Furey, M.L., Ricciardi, E., Gobbini, M.I., Wu, W.H., Cohen, L., Guazzelli, M., Haxby, J.V.: Beyond sensory images: object-based representation in the human ventral pathway. Proc. Natl. Acad. Sci. U. S. A. 101, 5658–5663 (2004)

    Article  Google Scholar 

  36. Gilbert, C.D.: 25. The constructive nature of visual processing. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (eds.) Principles of Neural Science, 5th edn, pp. 556–576. McGraw-Hill, New York (2012)

    Google Scholar 

  37. Lederman, S.J., Klatzky, R.L.: Relative availability of surface and object properties during early haptic processing. J. Exp. Psychol. Hum. Percept. Perform. 23, 1680–1707 (1997)

    Article  Google Scholar 

  38. Roland, P.E., O’Sullivan, B., Kawashima, R.: Shape and roughness activate different somatosensory areas in the human brain. Proc. Natl. Acad. Sci. U. S. A. 95, 3295–3300 (1998)

    Article  Google Scholar 

  39. Bodegård, A., Geyer, S., Grefkes, C., Zilles, K., Roland, P.E.: Hierarchical processing of tactile shape in the human brain. Neuron 31, 317–328 (2001)

    Article  Google Scholar 

  40. Kitada, R., Kito, T., Saito, D.N., Kochiyama, T., Matsumura, M., Sadato, N., Lederman, S.J.: Multisensory activation of the intraparietal area when classifying grating orientation: a functional magnetic resonance imaging study. J. Neurosci. 26, 7491–7501 (2006)

    Article  Google Scholar 

  41. Kitada, R., Sasaki, A.T., Okamoto, Y., Kochiyama, T., Sadato, N.: Role of the precuneus in the detection of incongruency between tactile and visual texture information: a functional MRI study. Neuropsychologia 64C, 252–262 (2014)

    Article  Google Scholar 

  42. Stilla, R., Sathian, K.: Selective visuo-haptic processing of shape and texture. Hum. Brain Mapp. 29, 1123–1138 (2008)

    Article  Google Scholar 

  43. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19, 342–368 (1987)

    Article  Google Scholar 

  44. Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J.: Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997)

    Article  Google Scholar 

  45. Amedi, A., Malach, R., Hendler, T., Peled, S., Zohary, E.: Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci. 4, 324–330 (2001)

    Article  Google Scholar 

  46. James, T.W., Humphrey, G.K., Gati, J.S., Servos, P., Menon, R.S., Goodale, M.A.: Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40, 1706–1714 (2002)

    Article  Google Scholar 

  47. Peltier, S., Stilla, R., Mariola, E., LaConte, S., Hu, X., Sathian, K.: Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45, 476–483 (2007)

    Article  Google Scholar 

  48. Kim, S., James, T.W.: Enhanced effectiveness in visuo-haptic object-selective brain regions with increasing stimulus salience. Hum. Brain Mapp. 31, 678–693 (2010)

    Article  Google Scholar 

  49. Zhang, M., Mariola, E., Stilla, R., Stoesz, M., Mao, H., Hu, X., Sathian, K.: Tactile discrimination of grating orientation: fMRI activation patterns. Hum. Brain Mapp. 25, 370–377 (2005)

    Article  Google Scholar 

  50. Sathian, K., Lacey, S., Stilla, R., Gibson, G.O., Deshpande, G., Hu, X., Laconte, S., Glielmi, C.: Dual pathways for haptic and visual perception of spatial and texture information. Neuroimage 57, 462–475 (2011)

    Article  Google Scholar 

  51. Kitada, R., Hashimoto, T., Kochiyama, T., Kito, T., Okada, T., Matsumura, M., Lederman, S.J., Sadato, N.: Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study. Neuroimage 25, 90–100 (2005)

    Article  Google Scholar 

  52. Craig, A.D., Chen, K., Bandy, D., Reiman, E.M.: Thermosensory activation of insular cortex. Nat. Neurosci. 3, 184–190 (2000)

    Article  Google Scholar 

  53. Servos, P., Lederman, S., Wilson, D., Gati, J.: fMRI-derived cortical maps for haptic shape, texture, and hardness. Brain Res. Cogn. Brain Res. 12, 307–313 (2001)

    Article  Google Scholar 

  54. Fitzgerald, P.J., Lane, J.W., Thakur, P.H., Hsiao, S.S.: Receptive field properties of the macaque second somatosensory cortex: representation of orientation on different finger pads. J. Neurosci. 26, 6473–6484 (2006)

    Article  Google Scholar 

  55. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  56. Iacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., Rizzolatti, G.: Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999)

    Article  Google Scholar 

  57. Carr, L., Iacoboni, M., Dubeau, M.C., Mazziotta, J.C., Lenzi, G.L.: Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc. Natl. Acad. Sci. U. S. A. 100, 5497–5502 (2003)

    Article  Google Scholar 

  58. Calvert, G.A., Campbell, R., Brammer, M.J.: Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr. Biol. 10, 649–657 (2000)

    Article  Google Scholar 

  59. Raij, T., Uutela, K., Hari, R.: Audiovisual integration of letters in the human brain. Neuron 28, 617–625 (2000)

    Article  Google Scholar 

  60. Grill-Spector, K., Malach, R.: fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta. Psychol. (Amst.) 107, 293–321 (2001)

    Article  Google Scholar 

  61. Segaert, K., Weber, K., de Lange, F.P., Petersson, K.M., Hagoort, P.: The suppression of repetition enhancement: a review of fMRI studies. Neuropsychologia 51, 59–66 (2013)

    Article  Google Scholar 

  62. Oosterhof, N.N., Tipper, S.P., Downing, P.E.: Crossmodal and action-specific: neuroimaging the human mirror neuron system. Trends Cogn. Sci. 17, 311–318 (2013)

    Article  Google Scholar 

  63. Grefkes, C., Weiss, P.H., Zilles, K., Fink, G.R.: Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35, 173–184 (2002)

    Article  Google Scholar 

  64. Nakashita, S., Saito, D.N., Kochiyama, T., Honda, M., Tanabe, H.C., Sadato, N.: Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study. Brain Res. Bull. 75, 513–525 (2008)

    Article  Google Scholar 

  65. Saito, D.N., Okada, T., Morita, Y., Yonekura, Y., Sadato, N.: Tactile-visual cross-modal shape matching: a functional MRI study. Brain Res. Cogn. Brain Res. 17, 14–25 (2003)

    Article  Google Scholar 

  66. Tal, N., Amedi, A.: Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp. Brain Res. 198, 165–182 (2009)

    Article  Google Scholar 

  67. Hadjikhani, N., Roland, P.E.: Cross-modal transfer of information between the tactile and the visual representations in the human brain: a positron emission tomographic study. J. Neurosci. 18, 1072–1084 (1998)

    Google Scholar 

  68. Kassuba, T., Klinge, C., Holig, C., Roder, B., Siebner, H.R.: Vision holds a greater share in visuo-haptic object recognition than touch. Neuroimage 65, 59–68 (2013)

    Article  Google Scholar 

  69. Whitaker, T.A., Simoes-Franklin, C., Newell, F.N.: Vision and touch: independent or integrated systems for the perception of texture? Brain Res. 1242, 59–72 (2008)

    Article  Google Scholar 

  70. Fleming, R.W.: Visual perception of materials and their properties. Vision Res. 94, 62–75 (2014)

    Article  Google Scholar 

  71. Eck, J., Kaas, A.L., Goebel, R.: Crossmodal interactions of haptic and visual texture information in early sensory cortex. Neuroimage 75, 123–135 (2013)

    Article  Google Scholar 

  72. Gonzalo, D., Shallice, T., Dolan, R.: Time-dependent changes in learning audiovisual associations: a single-trial fMRI study. Neuroimage 11, 243–255 (2000)

    Article  Google Scholar 

  73. Naya, Y., Yoshida, M., Miyashita, Y.: Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291, 661–664 (2001)

    Article  Google Scholar 

  74. Ranganath, C., Cohen, M.X., Dam, C., D’Esposito, M.: Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J. Neurosci. 24, 3917–3925 (2004)

    Article  Google Scholar 

  75. Tanabe, H.C., Honda, M., Sadato, N.: Functionally segregated neural substrates for arbitrary audiovisual paired-association learning. J. Neurosci. 25, 6409–6418 (2005)

    Article  Google Scholar 

  76. Weniger, G., Boucsein, K., Irle, E.: Impaired associative memory in temporal lobe epilepsy subjects after lesions of hippocampus, parahippocampal gyrus, and amygdala. Hippocampus 14, 785–796 (2004)

    Article  Google Scholar 

  77. Fuster, J.M., Bodner, M., Kroger, J.K.: Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000)

    Article  Google Scholar 

  78. Hasegawa, I., Fukushima, T., Ihara, T., Miyashita, Y.: Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science 281, 814–818 (1998)

    Article  Google Scholar 

  79. Krause, B.J., Schmidt, D., Mottaghy, F.M., Taylor, J., Halsband, U., Herzog, H., Tellmann, L., Muller-Gartner, H.W.: Episodic retrieval activates the precuneus irrespective of the imagery content of word pair associates. A PET study. Brain 122, 255–263 (1999)

    Article  Google Scholar 

  80. Tanabe, H.C., Sadato, N.: Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study. Neuroscience 160, 688–697 (2009)

    Article  Google Scholar 

  81. Holdstock, J.S., Hocking, J., Notley, P., Devlin, J.T., Price, C.J.: Integrating visual and tactile information in the perirhinal cortex. Cereb. Cortex 19, 2993–3000 (2009)

    Article  Google Scholar 

  82. Ekman, G., Hosman, J., Lindstroem, B.: Roughness, smoothness, and preference: a study of quantitative relations in individual subjects. J. Exp. Psychol. 70, 18–26 (1965)

    Article  Google Scholar 

  83. Verrillo, R.T., Bolanowski, S.J., McGlone, F.P.: Subjective magnitude of tactile roughness. Somatosens. Mot. Res. 16, 352–360 (1999)

    Article  Google Scholar 

  84. Kitada, R., Sadato, N., Lederman, S.J.: Tactile perception of nonpainful unpleasantness in relation to perceived roughness: effects of inter-element spacing and speed of relative motion of rigid 2-D raised-dot patterns at two body loci. Perception 41, 204–220 (2012)

    Article  Google Scholar 

  85. Klocker, A., Oddo, C.M., Camboni, D., Penta, M., Thonnard, J.L.: Physical factors influencing pleasant touch during passive fingertip stimulation. PLoS One 9, e101361 (2014)

    Article  Google Scholar 

  86. Chatonnet, J., Cabanac, M.: The perception of thermal comfort. Int. J. Biometeorol. 9, 183–193 (1965)

    Article  Google Scholar 

  87. Mower, G.D.: Perceived intensity of peripheral thermal stimuli is independent of internal body temperature. J. Comp. Physiol. Psychol. 90, 1152–1155 (1976)

    Article  Google Scholar 

  88. Attia, M., Engel, P.: Thermal pleasantness sensation: an indicator of thermal stress. Eur. J. Appl. Physiol. 50, 55–70 (1982)

    Article  Google Scholar 

  89. Nakamura, M., Yoda, T., Crawshaw, L.I., Yasuhara, S., Saito, Y., Kasuga, M., Nagashima, K., Kanosue, K.: Regional differences in temperature sensation and thermal comfort in humans. J. Appl. Physiol. 105, 1897–1906 (2008)

    Article  Google Scholar 

  90. Craig, A.D.: How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002)

    Article  Google Scholar 

  91. Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B.G., Starck, G., Ekholm, S., Strigo, I., Worsley, K., Vallbo, A.B., Bushnell, M.C.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 (2002)

    Article  Google Scholar 

  92. McGlone, F., Wessberg, J., Olausson, H.: Discriminative and affective touch: sensing and feeling. Neuron 82, 737–755 (2014)

    Article  Google Scholar 

  93. Rolls, E.T., O’Doherty, J., Kringelbach, M.L., Francis, S., Bowtell, R., McGlone, F.: Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003)

    Article  Google Scholar 

  94. Rolls, E.T., Grabenhorst, F., Parris, B.A.: Warm pleasant feelings in the brain. Neuroimage 41, 1504–1513 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-aid for Young Scientists (B) (#23700326) from the Japan Society for the Promotion of Science and by a Grant-in-Aid for Scientific Research on Innovative Areas, “Brain and Information Science on SHITSUKAN” (#25135734) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to R.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kitada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kitada, R. (2016). The Brain Network for Haptic Object Recogniton. In: Kajimoto, H., Saga, S., Konyo, M. (eds) Pervasive Haptics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55772-2_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55771-5

  • Online ISBN: 978-4-431-55772-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics