Skip to main content

Bidirectionality of Haptics

  • Chapter
  • First Online:
  • 969 Accesses

Abstract

In the chapters of “Component Design”, we introduced sensing technologies and displaying technologies treating both independently. However, these technologies are related. In this chapter we consider the links that can be made. Gibson coined the term, “active touch.” This term implis haptic interfaces also require mutual interactivity. We discuss about necessity of bidirectionality between input/output and the way how to design haptic devices. Furthermore, we consider attractive content of haptic media and their several bidirectionalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibson, J.J.: Observations on active touch. Psychol. Rev. 69, 477–491 (1962)

    Article  Google Scholar 

  2. Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5(2), 109–119 (2012)

    Article  Google Scholar 

  3. Kuchenbecker, K.J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P.J., Lee, D.I.: Verrotouch: high-frequency acceleration feedback for telerobotic surgery. Haptics: Gener. Perceiving Tang. Sensat. 6191, 189–196 (2010)

    Google Scholar 

  4. Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE toolkit – a prototyping tool for design and education of haptic media. In: Proceedings of Virtual Reality International Conference (Laval Virtual 2012), Laval, p. 22 (2012)

    Google Scholar 

  5. Harrison, C., Tan, D., Morris, D.: Skinput: appropriating the body as an input surface. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, Atlanta, pp. 453–462. ACM (2010)

    Google Scholar 

  6. Sato, M., Poupyrev, I., Harrison, C.: Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, Austin, pp. 483–492. ACM (2012)

    Google Scholar 

  7. Ono, M., Shizuki, B., Tanaka, J.: Touch & activate: adding interactivity to existing objects using active acoustic sensing. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, St Andrews, pp. 31–40. ACM (2013)

    Google Scholar 

  8. Nojima, T., Sekiguchi, D., Inami, M., Tachi, S.: The smarttool: a system for augmented reality of haptics. In: Proceedings of IEEE Virtual Reality, Orlando (2002)

    Google Scholar 

  9. Saga, S., Vlack, K., Kajimoto, H., Tachi, S.: Haptic video. In: ACM SIGGRAPH 2005 Emerging Technologies, Los Angeles, p. 7. ACM (2005)

    Google Scholar 

  10. Jeon, S., Choi, S.: Stiffness modulation for haptic augmented reality: extension to 3D interaction. In: Haptics Symposium, Waltham, 2010 IEEE, pp. 273–280. IEEE (2010)

    Google Scholar 

  11. Immersion Corporation: Touchsense (2010). http://www.immersion.com/products/touchsense-tactile-feedback/

    Google Scholar 

  12. Toshiba Corporation: E-sense (2010). 13th Embedded Systems Expo

    Google Scholar 

  13. Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, New York, pp. 283–292. ACM (2010)

    Google Scholar 

  14. Radivojevic, Z., Beecher, P., Bower, C., Cotton, D., Haque, S., Andrew, P., Henson, B., Howard, I., Ingram, J., Wall, S., Wolpert, D.: Programmable electrostatic surface for tactile perceptions. In: Proceedings of 2012 Society for Information Display International Symposium, Boston (2012)

    Google Scholar 

  15. Kyocera Corporation: New feelings haptic response touch panel (2011). CEATEC

    Google Scholar 

  16. Visell, Y., Law, A., Cooperstock, J.R.: Touch is everywhere: floor surfaces as ambient haptic interfaces. IEEE Trans. Haptics 2, 148–159 (2009)

    Article  Google Scholar 

  17. Fujita, K., Itoh, Y., Yoshida, A., Ozaki, M., Kikukawa, T., Fukazawa, R., Takashima, K., Kitamura, Y., Kishino, F.: Funbrella: recording and replaying vibrations through an umbrella axis. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, Athens, pp. 66–71. ACM (2009)

    Google Scholar 

  18. Kojima, Y., Hashimoto, Y., Kajimoto, H.: Eternal sharpener – a rotational haptic display that records and replays the sensation of sharpening a pencil. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2009), Toyama, pp. 18–21. IEEE (2009)

    Google Scholar 

  19. Ng, A., Dietz, P.H.: 39.3: the need for speed in touch systems. In: SID Symposium Digest of Technical Papers, Vancouver, vol. 44, pp. 547–550. Wiley Online Library (2013)

    Google Scholar 

  20. Saga, S., Raskar, R.: Simultaneous geometry and texture display based on lateral force for touchscreen. In: Proceedings of IEEE World Haptics 2013, Daejeon, pp. 437–442 (2013)

    Google Scholar 

  21. Yano, H., Miyamoto, Y., Iwata, H.: Haptic interface for perceiving remote object using a laser range finder. In: Proceedings of IEEE World Haptics 2009, Salt Lake City. IEEE (2009)

    Google Scholar 

  22. Saga, S., Deguchi, K.: Lateral-force-based 2.5-dimensional tactile display for touch screen. In: Proceedings of IEEE Haptics Symposium 2012, Vancouver, pp. 15–22 (2012)

    Google Scholar 

  23. Marino, L., Lilienfeld, S.O.: Dolphin-assisted therapy: More flawed data and more flawed conclusions. Anthrozoos: Multidiscip. J. Interact. People Anim. 20(3), 239–249 (2007)

    Article  Google Scholar 

  24. Wada, K., Ikeda, Y., Inoue, K., Uehara, R.: Development and preliminary evaluation of a caregiver’s manual for robot therapy using the therapeutic seal robot Paro. In: The 19th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2010), Viareggio, pp. 533–538 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by KAKENHI (26540095), Grant-in-Aid for challenging Exploratory Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Saga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Saga, S. (2016). Bidirectionality of Haptics. In: Kajimoto, H., Saga, S., Konyo, M. (eds) Pervasive Haptics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55772-2_18

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55771-5

  • Online ISBN: 978-4-431-55772-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics