Skip to main content

Optical Lattice Clocks for Precision Time and Frequency Metrology

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

An optical lattice operated at the “magic wavelength” provides a platform for precision metrology of time and frequency, where an atomic ensemble serves as a reference with precisely-controlled quantum states. Such an optical lattice clock allows extremely high accuracy and stability at the level of 10−18. This review outlines the principles and experimental realization of optical lattice clocks, in particular, the demonstration of quantum projection noise limited stability and the reduction of the uncertainty induced by the blackbody radiation. As a future prospect, we discuss the application of optical lattice clocks as a tool for relativistic geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Akatsuka, H. Ono, K. Hayashida, K. Araki, M. Takamoto, T. Takano, H. Katori, 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks. Jpn. J. Appl. Phys. 53(3), 032801 (2014). doi:10.7567/jjap.53.032801

    Article  ADS  Google Scholar 

  2. T. Akatsuka, M. Takamoto, H. Katori, Optical lattice clocks with non-interacting bosons and fermions. Nat. Phys. 4(12), 954–959 (2008). doi:10.1038/nphys1108

    Article  Google Scholar 

  3. X. Baillard, M. Fouché, R. Le Targat, P.G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G.D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, H. Schnatz, An optical lattice clock with spin-polarized 87Sr atoms. Eur. Phys. J. D. 48, 11–17 (2008)

    Article  ADS  Google Scholar 

  4. BIPM, in Report of the 101th meeting of the Comité International des Poids et Mesures (CIPM) (Bureau International des Poids et Mesures (BIPM), Sevres, Paris Cedex, 2013)

    Google Scholar 

  5. K. Beloy, J.A. Sherman, N.D. Lemke, N. Hinkley, C.W. Oates, A.D. Ludlow, Determination of the 5d6s 3D1 state lifetime and blackbody-radiation clock shift in Yb. Phys. Rev. A 86(5), 051404 (2012). doi:10.1103/PhysRevA.86.051404

    Article  ADS  Google Scholar 

  6. S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F.P.D. Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, C. Salomon, Cold atom clocks and applications. J. Phys. B Atomic Mol. Phys. 38(9), S449–S468 (2005). doi:10.1088/0953-4075/38/9/002

    Article  ADS  Google Scholar 

  7. G.K. Campbell, A.D. Ludlow, S. Blatt, J.W. Thomsen, M.J. Martin, M.H.G. de Miranda, T. Zelevinsky, M.M. Boyd, J. Ye, S.A. Diddams, T.P. Heavner, T.E. Parker, S.R. Jefferts, The absolute frequency of the 87Sr optical clock transition. Metrologia 45, 539–548 (2008). doi:10.1088/0026-1394/45/5/008

    Article  ADS  Google Scholar 

  8. P. Chang Yong, Y. Dai-Hyuk, L. Won-Kyu, P. Sang Eon, K. Eok Bong, L. Sun Kyung, C. Jun Woo, Y. Tai Hyun, M. Jongchul, P. Sung Jong, K. Taeg Yong, L. Sang-Bum, Absolute frequency measurement of 1S0 (F = 1/2) – 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS. Metrologia 50(2), 119 (2013)

    Article  ADS  Google Scholar 

  9. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)

    Article  ADS  Google Scholar 

  10. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Optical clocks and relativity. Science 329(5999), 1630–1633 (2010). doi:10.1126/science.1192720

    Article  ADS  Google Scholar 

  11. S. Chu, Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70(3), 685–706 (1998)

    Article  ADS  Google Scholar 

  12. C.N. Cohen-Tannoudji, Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70(3), 707–719 (1998)

    Article  ADS  Google Scholar 

  13. H. Dehmelt, in Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard. Thirty Fifth Annual Frequency Control Symposium, 27–29 May 1981 (1981), pp. 596–601. doi:10.1109/FREQ.1981.200532

  14. R. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89(2), 472–473 (1953). doi:10.1103/PhysRev.89.472

    Article  ADS  Google Scholar 

  15. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102–5105 (2000)

    Article  ADS  Google Scholar 

  16. S. Falke, H. Schnatz, J.S.R.V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, C. Lisdat, The 87Sr optical frequency standard at PTB. Metrologia 48(5), 399 (2011)

    Article  ADS  Google Scholar 

  17. J. Flowers, The route to atomic and quantum standards. Science 306(5700), 1324–1330 (2004). doi:10.1126/science.1102156

    Article  ADS  Google Scholar 

  18. T.W. Hänsch, Nobel lecture: Passion for precision. Rev. Mod. Phys. 78(4), 1297–1309 (2006)

    Article  ADS  Google Scholar 

  19. H. Hachisu, K. Miyagishi, S. Porsev, A. Derevianko, V. Ovsiannikov, V. Pal’chikov, M. Takamoto, H. Katori, Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100(5), 053001 (2008). doi:10.1103/PhysRevLett.100.053001

    Article  ADS  Google Scholar 

  20. J.L. Hall, Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78(4), 1279–1295 (2006)

    Article  ADS  Google Scholar 

  21. T.P. Heavner, S.R. Jefferts, E.A. Donley, J.H. Shirley, T.E. Parker, NIST-F1: Recent improvements and accuracy evaluations. Metrologia 42(5), 411–422 (2005). doi:10.1088/0026-1394/42/5/012

    Article  ADS  Google Scholar 

  22. A. Hemmerich, T. Hänsch, Two-dimensional atomic crystal bound by light. Phys. Rev. Lett. 70(4), 410–413 (1993). doi:10.1103/PhysRevLett.70.410

    Article  ADS  Google Scholar 

  23. N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with 10−18 instability. Science 341(6151), 1215–1218 (2013). doi:10.1126/science.1240420

    Article  ADS  Google Scholar 

  24. F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, H. Katori, Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. Opt. Lett. 34(5), 692–694 (2009). doi:10.1364/OL.34.000692

    Google Scholar 

  25. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A 47(5), 3554–3570 (1993)

    Article  ADS  Google Scholar 

  26. H. Katori, in Spectroscopy of Strontium Atoms in the Lamb-Dicke Confinement, ed by P. Gill. Proceedings of the 6th Symposium on Frequency Standards and Metrology (World Scientific, 2002), pp. 323–330

    Google Scholar 

  27. H. Katori, M. Takamoto, V. Pal’chikov, V. Ovsiannikov, Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91(17), 173005 (2003). doi:10.1103/PhysRevLett.91.173005

    Article  ADS  Google Scholar 

  28. H. Katori, Optical lattice clocks and quantum metrology. Nat. Photon. 5, 203–210 (2011). doi:10.1038/nphoton.2011.45

    Article  ADS  Google Scholar 

  29. R. Le Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. Rovera, P. Lemonde, Accurate optical lattice clock with 87Sr atoms. Phys. Rev. Lett. 97(13), 130801 (2006). doi:10.1103/PhysRevLett.97.130801

    Article  Google Scholar 

  30. R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D.G. Rovera, B. Nagórny, R. Gartman, P.G. Westergaard, M.E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck, Experimental realization of an optical second with strontium lattice clocks. Nat. Commun. 4, 2109 (2013). doi:10.1038/ncomms3109

    Google Scholar 

  31. N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103(6), 063001 (2009)

    Article  ADS  Google Scholar 

  32. C.H. Li, A.J. Benedick, P. Fendel, A.G. Glenday, F.X. Kartner, D.F. Phillips, D. Sasselov, A. Szentgyorgyi, R.L. Walsworth, A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452(7187), 610–612 (2008). doi:10.1038/nature06854

    Article  ADS  Google Scholar 

  33. A. Ludlow, M. Boyd, T. Zelevinsky, S. Foreman, S. Blatt, M. Notcutt, T. Ido, J. Ye, Systematic study of the 87Sr clock transition in an optical lattice. Phys. Rev. Lett. 96(3), 033003 (2006). doi:10.1103/PhysRevLett.96.033003

    Article  ADS  Google Scholar 

  34. L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19(21), 1777–1779 (1994)

    Article  ADS  Google Scholar 

  35. J.J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, S. Bize, Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7 × 10−15. Phys. Rev. Lett. 108(18), 183004 (2012). doi:10.1103/PhysRevLett.108.183004

    Article  ADS  Google Scholar 

  36. T. Middelmann, S. Falke, C. Lisdat, U. Sterr, High accuracy correction of blackbody radiation shift in an optical lattice clock. Phys. Rev. Lett. 109(26), 236004 (2012). doi:10.1103/PhysRevLett.109.263004

    Article  Google Scholar 

  37. T. Mukaiyama, H. Katori, T. Ido, Y. Li, M. Kuwata-Gonokami, Recoil-limited laser cooling of 87Sr atoms near the fermi temperature. Phys. Rev. Lett. 90(11), 113002 (2003). doi:10.1103/PhysRevLett.90.113002

    Article  ADS  Google Scholar 

  38. W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56(26), 2797–2799 (1986). doi:10.1103/PhysRevLett.56.2797

    Article  ADS  Google Scholar 

  39. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Opt. Express 18(2), 1667–1676 (2010). doi:10.1364/OE.18.001667

    Article  ADS  Google Scholar 

  40. T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, M. Bishof, M.D. Swallows, S.L. Campbell, J. Ye, Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109(23), 230801 (2012)

    Article  ADS  Google Scholar 

  41. K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93(25), 250602 (2004). doi:10.1103/PhysRevLett.93.250602

    Article  ADS  Google Scholar 

  42. V.D. Ovsiannikov, V.G. Pal’chikov, A.V. Taichenachev, V.I. Yudin, H. Katori, Multipole, nonlinear, and anharmonic uncertainties of clocks of Sr atoms in an optical lattice. Phys. Rev. A 88(1), 013405 (2013). doi:10.1103/PhysRevA.88.013405

    Article  ADS  Google Scholar 

  43. W.D. Phillips, Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721–741 (1998)

    Article  ADS  Google Scholar 

  44. S. Porsev, A. Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks. Phys. Rev. A 74(2), 020502 (2006). doi:10.1103/PhysRevA.74.020502

    Article  ADS  Google Scholar 

  45. K. Predehl, G. Grosche, S.M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T.W. Hansch, T. Udem, R. Holzwarth, H. Schnatz, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336(6080), 441–444 (2012). doi:10.1126/science.1218442

    Article  ADS  Google Scholar 

  46. T. Rosenband, W.M. Itano, P.O. Schmidt, D.B. Hume, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Blackbody radiation shift of the 27Al+ 1S03P0 transition, in Frequency and Time Forum (EFTF), 2006 20th European, 27–30 March 2006 (2006), pp. 289–292

    Google Scholar 

  47. E. Rubiola, On the measurement of frequency and its sample variance with high-resolution counters. Rev. Sci. Instrum. 76(5), 054703 (2005). doi:10.1063/1.1898203

    Article  ADS  Google Scholar 

  48. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick, C. Clairon, Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. Ultrasonics, ferroelectrics and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 887–894 (1998). doi:10.1109/58.710548

    Article  Google Scholar 

  49. T.R. Schibli, I. Hartl, D.C. Yost, M.J. Martin, A. Marcinkevicius, M.E. Fermann, J. Ye, Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355–359 (2008). doi:10.1038/nphoton.2008.79

    Article  ADS  Google Scholar 

  50. S. Schiller, G.M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Görlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Müller, L. Iorio, C. Lämmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M.P. Heß, W. Schäfer, Einstein gravity explorer–a medium-class fundamental physics mission. Exp. Astron. 23(2), 573–610 (2008). doi:10.1007/s10686-008-9126-5

    Article  ADS  Google Scholar 

  51. J.A. Sherman, N.D. Lemke, N. Hinkley, M. Pizzocaro, R.W. Fox, A.D. Ludlow, C.W. Oates, High-accuracy measurement of atomic polarizability in an optical lattice clock. Phys. Rev. Lett. 108(15), 153002 (2012). doi:10.1103/PhysRevLett.108.153002

    Article  ADS  Google Scholar 

  52. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M.T. Murphy, T. Kentischer, W. Schmidt, T. Udem, Laser frequency combs for astronomical observations. Science 321(5894), 1335–1337 (2008). doi:10.1126/science.1161030

    Article  ADS  Google Scholar 

  53. M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, H. Katori, Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope. J. Phys. Soc. Jpn. 75(10), 104302 (2006). doi:10.1143/jpsj.75.104302

    Article  ADS  Google Scholar 

  54. M. Takamoto, F.L. Hong, R. Higashi, H. Katori, An optical lattice clock. Nature 435(7040), 321–324 (2005). doi:10.1038/nature03541

    Article  ADS  Google Scholar 

  55. M. Takamoto, H. Katori, Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. Phys. Rev. Lett. 91(22), 223001 (2003). doi:10.1103/PhysRevLett.91.223001

    Article  ADS  Google Scholar 

  56. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82(18), 3568–3571 (1999)

    Article  ADS  Google Scholar 

  57. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015). doi:10.1038/nphoton.2015.5

    Google Scholar 

  58. P.G. Westergaard, J. Lodewyck, L. Lorini, A. Lecallier, E.A. Burt, M. Zawada, J. Millo, P. Lemonde, Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106(21), 210801 (2011). doi:10.1103/PhysRevLett.106.210801

    Article  ADS  Google Scholar 

  59. A. Yamaguchi, N. Shiga, S. Nagano, Y. Li, H. Ishijima, H. Hachisu, M. Kumagai, T. Ido, Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr. Appl. Phys. Express 5(2), 022701 (2012). doi:10.1143/apex.5.022701

    Article  ADS  Google Scholar 

  60. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second. Appl. Phys. Express 5(10), 102401 (2012)

    Article  ADS  Google Scholar 

  61. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82(19), 3799–3802 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the FIRST Program of the Japan Society for the Promotion of Science and by the Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Takamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takamoto, M., Katori, H. (2016). Optical Lattice Clocks for Precision Time and Frequency Metrology. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_5

Download citation

Publish with us

Policies and ethics