Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

Quantum key distribution (QKD) is expected to be the first application of quantum information to be realized as a practical system. In the last decade, research on QKD made significant progress both in concept and technology. In this chapter, we review the progress of technologies designed to realize high-speed and long-distance quantum communication over optical fiber, focusing on the results obtained by NTT. The first section describes a roadmap towards scalable quantum communications, which is composed of three phases. The second section reviews our effort to realize phase 1 quantum communication systems, namely point-to-point QKD systems based on the differential phase shift QKD (DPS-QKD) protocol. The third section describes entanglement generation and application in the telecom band, which are the key technologies for realizing phase 2 and 3 systems. The final section provides a summary and describes the future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Gisin, R. Thew, Quantum communication. Nat. Photon. 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  2. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, (1984), pp. 175–179

    Google Scholar 

  3. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  5. M. Peev et al., The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Article  ADS  Google Scholar 

  6. M. Sasaki et al., Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)

    Article  ADS  Google Scholar 

  7. H.J. Briegel, W. Dur, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operation in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  8. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  9. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  10. J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. K. Inoue, E. Waks, Y. Yamamoto, Differential phase shift quantum Key distribution. Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  12. K. Inoue, E. Waks, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)

    Article  ADS  Google Scholar 

  13. G. Brassard, N. Lutkenhaus, T. Mor, B.C. Sanders, Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).

    Article  ADS  Google Scholar 

  14. N. Lutkenhaus, Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  15. N. Imoto, H.A. Haus, Y. Yamamoto, Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)

    Article  ADS  Google Scholar 

  16. W.Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  17. H.K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  18. X.B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  19. M. Curty, L.L. Zhang, H.K. Lo, N. Lutkenhaus, Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states. Quant. Inf. Comput. 7, 665 (2007)

    MATH  MathSciNet  Google Scholar 

  20. T. Tsurumaru, Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol. Phys. Rev. A 75, 062319 (2007)

    Article  ADS  Google Scholar 

  21. H. Kawahara, A. Oka, K. Inoue, Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks. Phys. Rev. A 84, 052311 (2011)

    Article  ADS  Google Scholar 

  22. E. Waks, H. Takesue, Y. Yamamoto, Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006)

    Article  ADS  Google Scholar 

  23. K. Wen, K. Tamaki, Y. Yamamoto, Unconditional security of single-photon differential phase shift quantum key distribution. Phys. Rev. Lett. 103, 170503 (2009)

    Article  ADS  Google Scholar 

  24. T. Honjo, K. Inoue, H. Takahashi, Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004)

    Article  ADS  Google Scholar 

  25. H. Takesue, S.W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  26. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001)

    Article  ADS  Google Scholar 

  27. E. Diamanti, H. Takesue, C. Langrock, M.M. Fejer, Y. Yamamoto, 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Opt. Express 14, 13073–13082 (2006)

    Article  ADS  Google Scholar 

  28. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  29. P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard, Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

    Article  ADS  Google Scholar 

  30. J. Brendel, N. Gisin, W. Tittel, H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    Article  ADS  Google Scholar 

  31. H. Takesue, K. Inoue, Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop. Phys. Rev. A 70, 031802(R) (2004)

    Google Scholar 

  32. H. Takesue, K. Inoue, Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers. Phys. Rev. A 72, 041804(R) (2005)

    Google Scholar 

  33. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, K. Inoue, Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express 15, 13957–13964 (2007)

    Article  ADS  Google Scholar 

  34. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108 (2007)

    Article  ADS  Google Scholar 

  35. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt. Express 16, 20368–20373 (2008)

    Article  ADS  Google Scholar 

  36. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)

    Article  ADS  Google Scholar 

  37. H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, Long-distance entanglement-based quantum key distribution experiment using practical detectors. Opt. Express 18, 16777–16787 (2010)

    Article  ADS  Google Scholar 

  38. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000)

    Article  ADS  Google Scholar 

  39. N. Namekata, S. Sasamori, S. Inoue, 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Opt. Express 14, 10043–10049 (2006)

    Article  ADS  Google Scholar 

  40. M. Koashi, Y. Adachi, T. Yamamoto, N. Imoto, Security of entanglement-based quantum key distribution with practical detectors. arXiv:0804.0891 (2008)

    Google Scholar 

  41. T. Honjo, S.W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, Y. Yamamoto, Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16, 19118–19126 (2008)

    Google Scholar 

  42. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, H. Zbinden, Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007)

    Article  Google Scholar 

  43. H. Takesue, B. Miquel, Entanglement swapping using telecom-band photons generated in fibers. Opt. Express 17, 10748–10756 (2009)

    Article  ADS  Google Scholar 

  44. Y. Xue, A. Yoshizawa, H. Tsuchida, Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys. Rev. A 85, 032337 (2012)

    Article  ADS  Google Scholar 

  45. H. Takesue, K. Inoue, 1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. Opt. Express 13, 7832–7839 (2005)

    Google Scholar 

  46. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. F. Marsili et al., Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)

    Article  ADS  Google Scholar 

  48. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photon. 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  49. F. Benabid, P.S. Light, F. Couny, P. St. J. Russell, Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Opt. Express 13, 5694–5703 (2005)

    Article  ADS  Google Scholar 

  50. B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Gisin, Approaches for a quantum memory at telecommunication wavelengths. Phys. Rev. A 83, 012318 (2011)

    Article  ADS  Google Scholar 

  51. P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)

    Article  ADS  Google Scholar 

  52. C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, M.M. Fejer, H. Takesue, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005)

    Article  ADS  Google Scholar 

  53. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisinand, H. Zbinden, A photonic quantum information interface. Nature 437, 116 (2005)

    Article  ADS  Google Scholar 

  54. H. Takesue, Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett. 101, 173901 (2008)

    Article  ADS  Google Scholar 

  55. H. Takesue, Single-photon frequency down-conversion experiment. Phys. Rev. A 82, 013833 (2010)

    Article  ADS  Google Scholar 

  56. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)

    Article  ADS  Google Scholar 

  57. A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. J.P. Sprengers et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)

    Article  ADS  Google Scholar 

  59. W.H.P. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Article  ADS  Google Scholar 

  60. H. Takesue, N. Matsuda, E. Kuramochi, W.J. Munro, M. Notomi, An on-chip coupled resonator optical waveguide single-photon buffer. Nat. Commun. 4, 2725 (2013)

    Article  ADS  Google Scholar 

  61. S. Mino, H. Yamazaki, T. Goh, T. Yamada, Multilevel optical modulator utilizing PLC-LiNbO3 hybrid-integration technology. NTT Tech. Rev. 9(3), (2011). https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201103fa8.pdf&mode=show_pdf

Download references

Acknowledgements

The work described here is the result of collaborations with many researchers. I would like to thank all my collaborators, in particular Prof. Kyo Inoue (Osaka University) and Dr. Toshimori Honjo (NTT Laboratories).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Takesue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takesue, H. (2016). Quantum Communication Experiments Over Optical Fiber. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_3

Download citation

Publish with us

Policies and ethics