Skip to main content

Analysis of an Atom-Optical Architecture for Quantum Computation

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

  • 4927 Accesses

Abstract

Quantum technology based on photons has emerged as one of the most promising platforms for quantum information processing, having already been used in proof-of-principle demonstrations of quantum communication and quantum computation. However, the scalability of this technology depends on the successful integration of experimentally feasible devices in an architecture that tolerates realistic errors and imperfections. Here, we analyse an atom-optical architecture for quantum computation designed to meet the requirements of scalability. The architecture is based on a modular atom-cavity device that provides an effective photon-photon interaction, allowing for the rapid, deterministic preparation of a large class of entangled states. We begin our analysis at the physical level, where we outline the experimental cavity quantum electrodynamics requirements of the basic device. Then, we describe how a scalable network of these devices can be used to prepare a three-dimensional topological cluster state, sufficient for universal fault-tolerant quantum computation. We conclude at the application level, where we estimate the system-level requirements of the architecture executing an algorithm compiled for compatibility with the topological cluster state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ARDA, Quantum information science and technology roadmap project (2004), http://qist.lanl.gov

  2. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O‘Malley, P. Roushan, A. Vainsencher, J. Wenner, A. Korotkov, A. Cleland, J. Martinis, Logic gates at the surface code threshold: superconducting qubits poised for fault-tolerant quantum computing. Nature 508, 500–503 (2014)

    Google Scholar 

  3. S. Barrett, T. Stace, Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200,502 (2010)

    Article  Google Scholar 

  4. J. Benhelm, G. Kirchmair, C. Roos, R. Blatt, Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)

    Article  Google Scholar 

  5. C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. Wooters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B.B. Blinov, D.L. Moehring, L.M. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004). http://dx.doi.org/10.1038/nature02377

    Google Scholar 

  7. H. Bombin, M. Martin-Delgato, Topological quantum distillation. Phys. Rev. Lett. 97, 180,501 (2006)

    Article  Google Scholar 

  8. H. Bombin, M. Martin-Delgato, Topological computation without braiding. Phys. Rev. Lett. 98, 160,502 (2007)

    Article  Google Scholar 

  9. S. Bravyi, A. Kitaev, Quantum codes on a lattice with boundary (1998). quant-ph/9811052

    Google Scholar 

  10. S. Bravyi, A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022,316 (2005)

    Article  MathSciNet  Google Scholar 

  11. J. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  12. D. Cory, A. Fahmy, T. Havel, Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–1639 (1997)

    Article  ADS  Google Scholar 

  13. E. Dennis, A. Kitaev, A. Landahl, J. Preskill, Topological quantum memory. J. Math. Phys. 43, 4452 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. Deutsch, Quantum computational networks. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 425, 73 (1989)

    Google Scholar 

  15. S. Devitt, K. Nemoto, Programming a topological quantum computer, in 2012 IEEE 21st Asian Test Symposium (ATS), Niigatta (2012), pp. 55–60

    Google Scholar 

  16. S. Devitt, A. Greentree, R. Ionicioiu, J. O’Brien, W. Munro, L. Hollenberg, The photonic module: an on-demand resource for photonic entanglement. Phys. Rev. A 76, 052312 (2007)

    Article  ADS  Google Scholar 

  17. S. Devitt, A. Fowler, A. Stephens, A. Greentree, L. Hollenberg, W. Munro, K. Nemoto, Architectural design for a topological cluster state quantum computer. New. J. Phys. 11, 083,032 (2009)

    Article  Google Scholar 

  18. S. Devitt, A. Stephens, W. Munro, K. Nemoto, Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation. New J. Phys. 13, 095,001 (2011)

    Article  Google Scholar 

  19. S. Devitt, W. Munro, K. Nemoto, Quantum error correction for beginners. Rep. Prog. Phys. 76, 076,001 (2013)

    Article  Google Scholar 

  20. S. Devitt, A. Stephens, W. Munro, K. Nemoto, Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4, 2524 (2013)

    Article  ADS  Google Scholar 

  21. D. DiVincenzo, Topics in quantum computers. in Mesoscopic Electron Transport, ed. by L. Kowenhoven, G. Schon, L. Sohn. NATO ASI Series E (Kluwer Academic, Dordrecht, 1997)

    Google Scholar 

  22. D. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  23. J. Dowling, G. Milburn, Quantum technology: the second quantum revolution (2002). quant-ph/0206091

    Google Scholar 

  24. G. Duclos-Cianci, D. Poulin, Fault-tolerant renormalization group decoded for Abelian topological codes. Quantum Inf. Comput. 14, 0721 (2014)

    MathSciNet  Google Scholar 

  25. J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  28. A. Fowler, Low overhead surface code logical H. Quantum Inf. Comput. 12, 970 (2012)

    MathSciNet  MATH  Google Scholar 

  29. A. Fowler, S. Devitt, A bridge to lower overhead quantum computation (2012). arXiv:1209.0510

    Google Scholar 

  30. A. Fowler, K. Goyal, Topological cluster state quantum computing. Quantum Inf. Comput. 9, 721 (2009)

    MathSciNet  MATH  Google Scholar 

  31. A. Fowler, S. Devitt, L. Hollenberg, Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4, 237–251 (2004)

    MathSciNet  MATH  Google Scholar 

  32. A. Fowler, A. Stephens, P. Groszkowski, High threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052,312 (2009)

    Article  Google Scholar 

  33. A. Fowler, M. Mariantoni, J. Martinis, A. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032,324 (2012)

    Google Scholar 

  34. A. Fowler, S. Devitt, C. Jones, Surface code implementation of block code state distillation. Sci. Rep. 3, 1939 (2013)

    Article  ADS  Google Scholar 

  35. M. Freedman, D.A. Meyer, Projective plane and planar quantum codes. Found. Comput. Math. 1, 325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics (Springer, Berlin/Heidelberg, 2004)

    Google Scholar 

  37. C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  38. N. Gershenfeld, I. Chuang, Bulk spin resonance quantum computing. Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Giles, P. Selinger, Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87, 032,332 (2013)

    Article  Google Scholar 

  40. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  41. L. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  42. T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, D. Lucas, High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit (2014). arXiv:1403.1524

    Google Scholar 

  43. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  44. C. Hu, A. Young, J. O’Brien, W. Munro, J. Rarity, Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085,307 (2008)

    Google Scholar 

  45. C. Hu, W. Munro, J. O’Brien, J. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 025,326 (2009)

    Google Scholar 

  46. N.C. Jones, R.V. Meter, A. Fowler, P. McMahon, J. Kim, T. Ladd, Y. Yamamoto, A layered architecture for quantum computing using quantum dots. Phys. Rev. X 2, 031,007 (2012)

    Google Scholar 

  47. B. Kane, A silicon-based nuclear spin quantum computer. Nature (London) 393, 133 (1998)

    Google Scholar 

  48. A. Kitaev, Quantum computations: algorithms and error correction. Russ. Math. Serv. 52, 1191 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J.W. Bos, P. Gaudry, A. Kruppa, P.L. Montgomery, D.A. Osvik, H. te Riele, A. Timofeev, P. Zimmermann, Factorization of a 768-bit RSA modulus, in Advances in Cryptology – CRYPTO 2010, ed. by T. Rabin. IACR International Association for Cryptologic Research (Springer, Berlin, 2010), pp. 333–350

    Google Scholar 

  51. V. Kliuchnikov, D. Maslov, M. Mosca, Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190,502 (2013)

    Article  Google Scholar 

  52. E. Knill, R. Laflamme, G. Milburn, A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)

    Google Scholar 

  53. V. Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. H.K. Lo, S. Popescu, T. Spiller (eds.), Introduction To Quantum Computation and Information (World Scientific, Singapore, 1998)

    Google Scholar 

  55. C. Lorenz, R. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E. 57, 230 (1998)

    Article  ADS  Google Scholar 

  56. D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  57. R.V. Meter, T. Ladd, A. Fowler, Y. Yamamoto, Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295 (2010)

    Article  Google Scholar 

  58. C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.M. Duan, J. Kim, Large scale modular quantum computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022,317 (2014)

    Article  Google Scholar 

  59. J. Mooij, T. Orlando, L. Levitov, L. Tian, C. van der Wal, S. Lloyd, Josephson persistent-current qubit. Science 285, 1096–1039 (1999)

    Article  Google Scholar 

  60. Y. Nakamura, Y.A. Pashkin, J. Tsai, Coherent control of macroscopic quantum states in a cooper-pair box. Nature (London) 398, 786 (1999)

    Google Scholar 

  61. K. Nemoto, M. Trupke, S. Devitt, A. Stephens, K. Buczak, T. Nobauer, M. Everitt, J. Schmiedmayer, W. Munro, Photonic architecture for scalable quantum information processing in NV-diamond. arXiv:1309.4277 (2013)

    Google Scholar 

  62. M. Nielsen, Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040,503 (2004)

    Article  Google Scholar 

  63. M. Nielsen, I. Chuang, Quantum Computation and Information, 2nd edn. (Cambridge University Press, Cambridge/New York, 2000)

    MATH  Google Scholar 

  64. T. Ohno, G. Arakawa, I. Ichinose, T. Matsui, Phase structure of the random-plaquette image gauge model: accuracy threshold for a toric quantum memory. Nucl. Phys. B 697, 462 (2004)

    Article  ADS  Google Scholar 

  65. A. Paetznick, A. Fowler, Quantum circuit optimization by topological compaction in the surface code (2013). arXiv:1304.2807

    Google Scholar 

  66. S.J.D. Phoenix, P.L. Knight, Establishment of an entangled atom-field state in the jaynes-cummings model. Phys. Rev. A 44, 6023–6029 (1991). doi:10.1103/PhysRevA.44.6023. http://link.aps.org/doi/10.1103/PhysRevA.44.6023

    Google Scholar 

  67. R. Raussendorf, H.J. Briegel, A one way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  68. R. Raussendorf, J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190,504 (2007)

    Article  Google Scholar 

  69. R. Raussendorf, J. Harrington, K. Goyal, A fault-tolerant one way quantum computer. Ann. Phys. 321, 2242 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  71. N. Ross, P. Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations (2014). arXiv:1403.2975

    Google Scholar 

  72. C. Ryan, M. Laforest, R. Laflamme, Randomized benchmarking of single-and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11, 013,034 (2009)

    Article  Google Scholar 

  73. C. Santori, D. Fattal, Y. Yamamoto, Single-Photon Devices and Applications (Whiley-VCH, Weinheim, 2010)

    Google Scholar 

  74. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  75. T. Spiller, W. Munro, Towards a quantum information technology industry. J. Phys.: Condens. Matter 18, 1–10 (2006)

    Google Scholar 

  76. T. Spiller, W. Munro, S. Barrett, P. Kok, An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46, 407 (2005)

    Article  ADS  Google Scholar 

  77. T.P. Spiller, K. Nemoto, S.L. Braunstein, W. Munro, P. van Loock, G.J. Milburn, Quantum computation by communication. New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  78. A. Stephens, Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022,321 (2014)

    Article  Google Scholar 

  79. A. Stephens, Z. Evans, S. Devitt, A. Greentree, A. Fowler, W. Munro, J. O’Brien, K. Nemoto, L. Hollenberg, Deterministic optical quantum computer using photonic modules. Phys. Rev. A 78, 032,318 (2008)

    Article  Google Scholar 

  80. A. Stephens, W. Munro, K. Nemoto, High-threshold topological quantum error correction against biased noise. Phys. Rev. A 88, 060,301(R) (2013)

    Google Scholar 

  81. R. Stock, D. James, A scalable, high-speed measurement based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170,501 (2009)

    Google Scholar 

  82. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sorensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010). http://dx.doi.org/10.1038/nature09256

    Google Scholar 

  83. E. Waks, J. Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153,601 (2006)

    Article  Google Scholar 

  84. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  85. C. Wang, J. Harrington, J. Preskill, Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys. 303, 31 (2003)

    Article  ADS  MATH  Google Scholar 

  86. D. Wang, A. Fowler, A. Stephens, L. Hollenberg, Threshold error rates for the toric and surface codes. Quantum Inf. Comput. 10, 456 (2010)

    MathSciNet  MATH  Google Scholar 

  87. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Single-atom single-photon quantum interface. Science 317(5837), 488–490 (2007). doi:10.1126/science.1143835. http://www.sciencemag.org/content/317/5837/488.abstract

    Google Scholar 

  88. N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, M. Lukin, Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun. 3, 800 (2012)

    Article  ADS  Google Scholar 

  89. A. Young, C. Hu, L. Marseglia, J. Harrington, J. O’Brien, J. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125,318 (2008)

    Article  Google Scholar 

  90. S.B. Zheng, G.C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 85, 2392–2395 (2000). doi:10.1103/PhysRevLett.85.2392. http://link.aps.org/doi/10.1103/PhysRevLett.85.2392

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), a Scientific Research of Specially Promoted Research (grant no.18001002) by MEXT and a Quantum Cybernetics grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kae Nemoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K. (2016). Analysis of an Atom-Optical Architecture for Quantum Computation. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_19

Download citation

Publish with us

Policies and ethics