Advertisement

Equilibrium to Nonequilibrium Condensation in Driven-Dissipative Semiconductor Systems

  • Makoto Yamaguchi
  • Tetsuo Ogawa
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Semiconductor microcavity systems strongly coupled to quantum wells are now receiving a great deal of attention because of their ability to efficiently generate coherent light by the Bose-Einstein condensation (BEC) of an exciton-polariton gas. Since the exciton polaritons are composite quasi-bosonic particles, many fundamental features arise from their original constituents, i.e., electrons, holes and photons. As a result, not only equilibrium phases typified by the BEC but also nonequilibrium lasing phases can be achieved. In this contribution, we describe a framework which can treat such equilibrium and nonequilibrium phases in a unified way.

Keywords

Semiconductor Laser Feshbach Resonance Gain Spectrum Vertical Cavity Surface Emit Laser Exciton Polariton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to K. Kamide, R. Nii, Y. Yamamoto, T. Horikiri, Y. Shikano, Y. Matsuo, T. Yuge, and M. Bamba for fruitful discussions. This work is supported by the JSPS through its FIRST Program, and DYCE, KAKENHI No. 20104008.

References

  1. 1.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    J. Bloch, T. Freixanet, J.Y. Marzin, V. Thierry-Mieg, R. Planel, Appl. Phys. Lett. 73, 1694 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Science 298, 199 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Phys. Rev. Lett. 100, 047401 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, Proc. Natl. Acad. Sci. USA 100, 15318 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kasprzak, D.D. Solnyshkov, R. André, L.S. Dang, G. Malpuech, Phys. Rev. Lett. 101, 146404 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    D. Snoke, in Exciton Polaritons in Microcavities, ed. by D. Sanvitto, V. Timofeev. Springer Series in Solid-State Sciences, vol. 172 (Springer, Berlin/Heidelberg, 2012), pp. 307–327Google Scholar
  10. 10.
    L.V. Keldysh, Y.V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965)Google Scholar
  11. 11.
    P.B. Littlewood, P.R. Eastham, J.M.J. Keeling, F.M. Marchetti, B.D. Simons, M.H. Szymanska, J. Phys.: Condens. Matter 16(35), S3597 (2004)Google Scholar
  12. 12.
    Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89, 130402 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Ohashi, A. Griffin, Phys. Rev. A 67, 063612 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kamide, T. Ogawa, Phys. Rev. Lett. 105, 056401 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T. Byrnes, T. Horikiri, N. Ishida, Y. Yamamoto, Phys. Rev. Lett. 105, 186402 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    W. Chow, H. Schneider, S. Koch, C.H. Chang, L. Chrostowski, C. Chang-Hasnain, IEEE J. Quantum Electron. 38, 402 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    K. Kamide, T. Ogawa, Phys. Status Solidi (c) 8, 1250 (2011)Google Scholar
  18. 18.
    N. Berloff, J. Keeling, in Physics of Quantum Fluids, ed. by A. Bramati, M. Modugno. Springer Series in Solid-State Sciences, vol. 177 (Springer, Berlin/Heidelberg, 2013), pp. 19–38Google Scholar
  19. 19.
    M. Yamaguchi, K. Kamide, T. Ogawa, Y. Yamamoto, New J. Phys. 14, 065001 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yamaguchi, K. Kamide, R. Nii, T. Ogawa, Y. Yamamoto, Phys. Rev. Lett. 111, 026404 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. B 75, 195331 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    J. Keeling, M.H. Szymańska, P.B. Littlewood, in Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, ed. by G. Slavcheva, P. Roussignol. NanoScience and Technology (Springer, Berlin/Heidelberg, 2010), pp. 293–329Google Scholar
  24. 24.
    H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    H. Haug, S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore/River Edge, 2004)CrossRefGoogle Scholar
  26. 26.
    C. Comte, P. Nozieres, J. Phys. France 43, 1069 (1982)CrossRefGoogle Scholar
  27. 27.
    K. Henneberger, F. Herzel, S.W. Koch, R. Binder, A.E. Paul, D. Scott, Phys. Rev. A 45, 1853 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    R. Balili, B. Nelsen, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. B 79, 075319 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    B. Nelsen, R. Balili, D.W. Snoke, L. Pfeiffer, K. West, J. Appl. Phys. 105, 122414 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    L.S. Dang, D. Heger, R. André, F. Boeuf, R. Romestain, Phys. Rev. Lett. 81, 3920 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Tempel, F. Veit, M. Aßmann, L.E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, M. Bayer, Phys. Rev. B 85, 075318 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    J.S. Tempel, F. Veit, M. Aßmann, L.E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, M. Bayer, New J. Phys. 14, 083014 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    P. Tsotsis, P.S. Eldridge, T. Gao, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, New J. Phys. 14, 023060 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    E. Kammann, H. Ohadi, M. Maragkou, A.V. Kavokin, P.G. Lagoudakis, New J. Phys. 14, 105003 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, R.A. Silverman, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press, New York, 1975)Google Scholar
  36. 36.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, New York, 1997)CrossRefGoogle Scholar
  37. 37.
    S. Schmitt-Rink, D.S. Chemla, H. Haug, Phys. Rev. B 37, 941 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    M. Yamaguchi, T. Asano, S. Noda, Rep. Prog. Phys. 75(9), 096401 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    T. Horikiri, Y. Matsuo, Y. Shikano, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, J. Phys. Soc. Jpn. 82(8), 084709 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    R. Matsunaga, Y.I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, R. Shimano, Phys. Rev. Lett. 111, 057002 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    T. Papenkort, V.M. Axt, T. Kuhn, Phys. Rev. B 76, 224522 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    R. Hanai, T. Kashimura, R. Watanabe, D. Inotani, Y. Ohashi, Phys. Rev. A 88, 053621 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of PhysicsOsaka UniversityOsakaJapan

Personalised recommendations