Skip to main content

Quantum Simulation with Trapped Ions—Experimental Realization of the Jaynes-Cummings-Hubbard Model—

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

  • 4945 Accesses

Abstract

We present an experimental demonstration of the Jaynes-Cummings-Hubbard model conducted using trapped ions. This model describes an array of coupled optical cavities, each containing a two-level atom, and is expected to exhibit properties peculiar to strongly correlated systems. Using the internal and radial phonon states of two trapped ions, the model is experimentally realized and quantum phase transition from a localized insulator state to a delocalized superfluid state is demonstrated. A superfluid phase of polaritonic excitations is also observed during the adiabatic transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Nat. Phys. 4, 757 (2008)

    Article  Google Scholar 

  3. K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Nature 465, 590 (2010)

    Article  ADS  Google Scholar 

  4. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, D.-G. Lin, L.-M. Duan, C.-C. Joseph Wang, J.K. Freericks, C. Monroe, Nat. Commun. 2, 377 (2011)

    Article  ADS  Google Scholar 

  5. M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  6. M.J. Hartmann, F. Brandao, M.B. Plenio, Laser & Photon. Rev. 2, 527 (2008)

    Article  Google Scholar 

  7. A. Tomadin, R. Fazio, J. Opt. Soc. Am. B 27, A130 (2010)

    Article  ADS  Google Scholar 

  8. M.J. Hartmann, F. Brandao, M.B. Plenio, Nat. Phys 2, 849 (2006)

    Article  Google Scholar 

  9. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)

    Article  Google Scholar 

  10. D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805 (2007)

    Article  ADS  Google Scholar 

  11. D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007)

    Article  ADS  Google Scholar 

  12. E.K. Irish, C.D. Ogden, M.S. Kim, Phys. Rev. A 77, 033801 (2008)

    Article  ADS  Google Scholar 

  13. M.I. Makin, J.H. Cole, C. Tahan, L.C.L. Hollenberg, A.D. Greentree, Phys. Rev. A 77, 053819 (2008)

    Article  ADS  Google Scholar 

  14. P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Phys. Rev. A 80, 060301 (2009)

    Article  ADS  Google Scholar 

  15. A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  16. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)

    Article  ADS  Google Scholar 

  17. M. Johanning, A.F. Varon, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009)

    Article  ADS  Google Scholar 

  18. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  19. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996)

    Article  ADS  Google Scholar 

  20. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  21. X.-L. Deng, D. Porras, J.I. Cirac, Phys. Rev. A 72, 063407 (2005)

    Article  ADS  Google Scholar 

  22. D. Porras, J.I. Cirac, Phys. Rev. Lett. 93, 263602 (2004)

    Article  ADS  Google Scholar 

  23. K. Toyoda, Y. Matsuno, A. Noguchi, S. Haze, S. Urabe, Phys. Rev. Lett. 111, 160501 (2013)

    Article  ADS  Google Scholar 

  24. X.-L. Deng, D. Porras, J.I. Cirac, Phys. Rev. A 77, 033403 (2008)

    Article  ADS  Google Scholar 

  25. K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, C. Monroe, Phys. Rev. Lett. 103, 120502 (2009)

    Article  ADS  Google Scholar 

  26. S. Haze, Y. Tateishi, A. Noguchi, K. Toyoda, S. Urabe, Phys. Rev. A 85, 031401(R) (2012)

    Google Scholar 

  27. K. Toyoda, T. Watanabe, T. Kimura, S. Nomura, S. Haze, S. Urabe, Phys. Rev. A 83, 022315 (2011)

    Article  ADS  Google Scholar 

  28. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011)

    Article  ADS  Google Scholar 

  29. M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hansel, Nature 471, 200 (2011)

    Article  ADS  Google Scholar 

  30. K. Toyoda, S. Haze, R. Yamazaki, S. Urabe, Phys. Rev. A 81, 032322 (2010)

    Article  ADS  Google Scholar 

  31. D.F.V. James, Appl. Phys. B 66, 181 (1998)

    Article  ADS  Google Scholar 

  32. G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan, Euro. Phys. Lett. 86, 60004 (2009)

    Article  ADS  Google Scholar 

  33. R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, J. Appl. Phys. 105, 013114 (2009)

    Article  ADS  Google Scholar 

  34. M. Kumph, M. Brownnutt, R. Blatt, New J. Phys. 13, 073043 (2011)

    Article  ADS  Google Scholar 

  35. J.D. Siverns, S. Weidt, K. Lake, B. Lekitsch, M.D. Hughes, W. Hensinger, New J. Phys. 14, 085009 (2012)

    Article  ADS  Google Scholar 

  36. S. Korenblit, D. Kafri, W.C. Campbell, R. Islam, E.E. Edwards, Z.-X. Gong, G.-D. Lim, L.-M. Duan, J. Kim, K. Kim, C. Monroe, New J. Phys. 14, 095024 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Urabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Urabe, S., Toyoda, K., Noguchi, A. (2016). Quantum Simulation with Trapped Ions—Experimental Realization of the Jaynes-Cummings-Hubbard Model—. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_15

Download citation

Publish with us

Policies and ethics