Bose-Einstein Condensation: A Platform for Quantum Simulation Experiments

Part of the Lecture Notes in Physics book series (LNP, volume 911)


Bose-Einstein condensation (BEC) of dilute atomic gases and dense exciton-polaritons provides unique experimental platforms for the simulation of quantum many-body systems in various trap and lattice structures. Atomic BEC is suitable for exploration of the thermal equilibrium and steady state properties of isolated many-body systems, while exciton-polariton BEC is suitable for study of the nonequilibrium and transient properties of open dissipative many-body systems. In this chapter, we will review the fundamental properties of these distinct Bose-Einstein condensates to provide a basis for later discussions of various quantum simulation experiments using cold atoms and exciton-polaritons.


Coherent State Quantum Well Optical Lattice Condensate Fragmentation Bogoliubov Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    S.N. Bose, Plancks law and light quantum hypothesis. Z. Phys. 26, 178 (1924)ADSCrossRefMATHGoogle Scholar
  4. 4.
    A. Einstein, Quantum theory of ideal monoatomic gases. Sitzber. Preuss. Akad. Wiss. 23, 3 (1925)Google Scholar
  5. 5.
    P. Kapitza, Viscosity of liquid helium below the \(\lambda\)-point. Nature 141, 74 (1938)ADSCrossRefGoogle Scholar
  6. 6.
    J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75–75 (1938)ADSCrossRefGoogle Scholar
  7. 7.
    F. London, The lambda-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature 141, 643 (1938)ADSCrossRefGoogle Scholar
  8. 8.
    N.N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)Google Scholar
  9. 9.
    L.D. Landau, The theory of superfluidity of helium II. J. Phys. USSR 5, 71 (1941)Google Scholar
  10. 10.
    R.P. Feynman, Atomic theory of the 2-fluid model of liquid helium. Phys. Rev. 94, 262 (1954)ADSCrossRefMATHGoogle Scholar
  11. 11.
    L.D. Landau, E.M. Lifshitz, Statisticheskai Fizika (Fizatgiz, Moscow, 1951)Google Scholar
  12. 12.
    O. Penrose, On the quantum mechanics of helium II. Philos. Mag. 42, 1373 (1951)CrossRefMATHGoogle Scholar
  13. 13.
    O. Penrose, L. Onsager, Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)ADSCrossRefMATHGoogle Scholar
  14. 14.
    L. Onsager, Statistical hydrodynamics. Nuovo Cimento 6, 279–287 (1949)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.P. Feynman, Progress in Low Temperature Physics, vol. 1 (North-Holland, Amsterdam, 1955)Google Scholar
  16. 16.
    S.A. Moskalenko, Reversible optico-hydrodynamic effects in nonideal exciton gas. Fiz. Tverd. Tela 4, 276 (1962)ADSGoogle Scholar
  17. 17.
    I.M. Blatt, W. Brandt, K.W. Boer, Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691 (1962)ADSCrossRefGoogle Scholar
  18. 18.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    H. Deng, D. Press, S. Goetzinger, G. Solomon, H. Rudolf, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L. Si Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)MATHGoogle Scholar
  24. 24.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130(6), 2529–2539 (1963)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Yamamoto, H.A. Haus, Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Goldstone, Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    J. Goldstone, S. Weinberg, A. Salam, Broken symmetries. Phys. Rev. 127, 965 (1962)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)Google Scholar
  30. 30.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1951)Google Scholar
  31. 31.
    I. Bloch, T.W. Hänsch, T. Esslinger, Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Yamamoto, A. Imamoglu, Mesoscopic Quantum Optics (Wiley-Interscience, New York, 1999)MATHGoogle Scholar
  33. 33.
    R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 1046–1048 (1956)ADSCrossRefGoogle Scholar
  34. 34.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  35. 35.
    R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1973)Google Scholar
  36. 36.
    T. Horikiri, P. Schwendimann, A. Quattropani, S. Hofling, A. Forchel, Y. Yamamoto, Higher order coherence of exciton-polariton condensates. Phys. Rev. B 81, 0333307 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    P.C. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)ADSCrossRefGoogle Scholar
  38. 38.
    J.R. Ensher, D.S. Jin, M.R. Matthews, C.E. Wieman, E.A. Cornell, Bose-Einstein condensation in a dilute gas: measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984–4987 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    T.D. Lee, K. Huang, C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D.E. Pritchard, W. Ketterle, Excitation of phonons in a bose-einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876–2879 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fijisawa, M. Kuwata-Gonokami, A. Löffler, A. Höfling, A. Forchel, Y. Yamamoto, Observation of bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4, 700–705 (2008)CrossRefGoogle Scholar
  42. 42.
    P. Nozieres, Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1995), p. 15CrossRefGoogle Scholar
  43. 43.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or 2- dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  44. 44.
    V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group ii. Sov. Phys. JETP 34, 610 (1972)ADSGoogle Scholar
  45. 45.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii-kosterlitz-thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    G. Roumpos, M.D. Fraser, A. Löfler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton polariton condensate. Nat. Phys. 7, 129 (2011)CrossRefGoogle Scholar
  48. 48.
    Z. Hadzibabic, J. Dalibard, Two-dimensional bose-fluids: an atmic physics perspective. Rivista de Nuovo Cimento 34, 389 (2011)Google Scholar
  49. 49.
    G. Roumpos, M. Lohse, W.H. Nitsche, J. Keeling, M.H. Szymanska, P.B. Littlewood, A. Löfler, L. Worschech, A. Forchel, Y. Yamamoto, Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Nat. Aca. Sci. 109, 6467 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    W.H. Nitsche, N.Y. Kim, G. Roumpos, C. Schmeiden, M. Kama, S. Hoerling, A. Forchel, Y. Yamamoto, Algebraic order at the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Phys. Rev. B90, 205430 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, 1999)CrossRefGoogle Scholar
  52. 52.
    R. Grimm, M. Weidemüller, Y.B. Ovchinikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge/New York, 2002)Google Scholar
  54. 54.
    F. Tassone, Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Bynes, P. Recher, N. Kumada, T. Fijisawa, Y. Yamamoto, Coherent zero-state and π-state in an exciton-polariton condensate array. Nature 450, 529–533 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    G. Nardin, Y. Leger, B. Pietka, F. Morier-Genoud, B. Deveaud-Pledran, Phase-resolved imaging of confined exciton-polariton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar gaas-gaalas semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    H. Deng, G. Weihs, G. Snoke, J. Bloch, Y. Yamamoto, Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. 100, 15318–15323 (2003)Google Scholar
  60. 60.
    S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)Google Scholar
  61. 61.
    T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butte, N. Grandjean, L. Orosz, F. Reveret, J. Leymarie, J. Zuniga-Perez, M. Leroux, F. Semond, S. Bouchoule, Polariton lasing in a hybrid bulk zno microcavity. Appl. Phys. Lett. 99, 161104 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    S. Kena-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    T. Köhler, K. Goral, P.S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    C. Chin, R. Grimm, P.S. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Yakahashi, Chapter 14 in this bookGoogle Scholar
  66. 66.
    E.A. Donley, N.R. Clausen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    C. Regal, M Greiner, D.S. Jin, Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)Google Scholar
  68. 68.
    M. Inguscio, W. Ketterle, C. Salomon, Ultracold fermi gases. In International School of Physics, Enrico Fermi, Course CLXIV (IOS, Amsterdam, 2006)Google Scholar
  69. 69.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    T. Byrnes, P. Recher, Y. Yamamoto, Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B. 81, 205312 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan
  2. 2.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations