Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

This chapter gives a concise description of the fundamental concepts of quantum information and quantum communication, which is pertinent to the discussions in the subsequent chapters. Beginning with the basic set of rules that dictate quantum mechanics, the chapter explains the most general ways to describe quantum states, measurements, and state transformations. Convenient mathematical tools are also presented to provide an intuitive picture of a qubit, which is the simplest unit of quantum information. The chapter then elaborates on the distinction between quantum communication and classical communication, with emphasis on the role of quantum entanglement as a communication resource. Quantum teleportation and dense coding are then explained in the context of optimal resource conversions among quantum channels, classical channels, and entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The operational meaning of two states being different is that a measurement exists on the physical system that can show the difference statistically.

  2. 2.

    Rule 1 also implies that we exclude any cases where a physical law such as the superselection rule imposes an additional restriction on the preparable states.

  3. 3.

    Given s′, we may choose the dimensions of \(\mathcal{H}_{E}\) and \(\mathcal{H}_{E'}\) such that they satisfy \(\dim \mathcal{H}_{E'} \geq s'\) and \(\dim \mathcal{H}_{A}\dim \mathcal{H}_{E} =\dim \mathcal{H}_{A'}\dim \mathcal{H}_{E'}\).

  4. 4.

    Regard (j, k) as a single index with the values 1, …, s′, where \(s' =\sum _{j}t^{(j)}\).

  5. 5.

    There is an equivalent method to define the fidelity as \(F(\hat{\rho }_{1},\hat{\rho }_{2}) = (\mathrm{Tr}\sqrt{\hat{\rho }_{1 }^{1/2 }\hat{\rho }_{2 } \hat{\rho }_{1 }^{1/2}})^{2}\) [6, 7]. In some of the literature, the quantity \(\sqrt{F(\hat{\rho }_{1 },\hat{\rho }_{2 } )}\) is referred to as the fidelity.

  6. 6.

    An explicit form of Alice’s transformation is \(\vert \varPhi _{l,m}\rangle _{AB} = (\hat{X}_{A}^{l}\hat{Z}_{A}^{m} \otimes \hat{ 1}_{B})\vert \varPhi _{0,0}\rangle _{AB}\), which is obtained from Eq. (1.46).

References

  1. N. Gisin, Helv. Phys. Acta 62(4), 363 (1989)

    MathSciNet  Google Scholar 

  2. L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183(1), 14 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.K. Lo, H.F. Chau, Phys. Rev. Lett. 78(17), 3410 (1997)

    Article  ADS  Google Scholar 

  4. D. Mayers, Phys. Rev. Lett. 78(17), 3414 (1997)

    Article  ADS  Google Scholar 

  5. A. Peres, Phys. Lett. A 128(1), 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Uhlmann, Rep. Math. Phys. 9(2), 273 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. R. Jozsa, J. Modern Opt. 41(12), 2315 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. M. Żukowski, A. Zeilinger, M. Horne, A. Ekert, Phys. Rev. Lett. 71(26), 4287 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Koashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Koashi, M. (2016). Quantum Information Theory for Quantum Communication. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_1

Download citation

Publish with us

Policies and ethics