Skip to main content

Multiwalled Carbon Nanotube-Induced Pulmonary Fibrogenesis

  • Chapter
Biological Effects of Fibrous and Particulate Substances

Abstract

Engineered nanomaterials are increasingly being incorporated into a variety of technologies and applications due to their unique properties. In particular, multiwalled carbon nanotubes (MWCNT) hold great promise for many different industries. MWCNTs are made of carbon and have a cylindrical structure which can be synthesized with diameters in the nanometer-sized range and variable lengths into the micron range. MWCNTs have unique properties allowing for high electrical and thermal conductance, high tensile strength, low weight, and the ability to be manufactured with a variety of physicochemical properties and to undergo numerous surface modifications. Along with their vast potential, there is growing concern regarding human exposure and the possibility for adverse health effects. The primary route of human exposure to MWCNT is through inhalation in both occupational and environmental settings. Based on a commonality of properties including high aspect ratio and biopersistence within the lung, there is concern of asbestos-like toxicity following inhalation of MWCNTs. To date there has been sufficient toxicological evaluation in cell culture and animal models establishing the fibrogenic potential of MWCNTs. This chapter summarizes our current understanding regarding MWCNT-induced pulmonary fibrosis specifically examining current occupational human exposure levels, pulmonary deposition, susceptibility, and mechanisms of MWCNT-induced fibrogenesis. Further gaps in our current knowledge and likely areas of future study are highlighted throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov. 2003;2(1):29–37. doi:10.1038/nrd988.

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Crespo A, Klepczynska-Nystrom A, Lundin A, Larsson BM, Svartengren M. (1)(1)(1)Indium-labeled ultrafine carbon particles; a novel aerosol for pulmonary deposition and retention studies. Inhal Toxicol. 2011;23(3):121–8. doi:10.3109/08958378.2010.549856.

    Article  CAS  PubMed  Google Scholar 

  3. Frampton MW. Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect. 2001;109 Suppl 4:529–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, et al. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 2010;43(2):142–51. doi:10.1165/rcmb.2009-0113OC.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Park EJ, Choi K, Park K. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res. 2011;34(2):299–307. doi:10.1007/s12272-011-0216-y.

    Article  CAS  PubMed  Google Scholar 

  6. Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, et al. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol. 2013;49(4):525–35. doi:10.1165/rcmb.2013-0019OC.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol. 2012;24(5):320–39. doi:10.3109/08958378.2012.668229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang L, Ding W, Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol. 2010;10(12):8617–24.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, et al. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 2011;8:24. doi:10.1186/1743-8977-8-24.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Padilla-Carlin DJ, Schladweiler MC, Shannahan JH, Kodavanti UP, Nyska A, Burgoon LD, et al. Pulmonary inflammatory and fibrotic responses in Fischer 344 rats after intratracheal instillation exposure to Libby amphibole. J Toxicol Environ Health A. 2011;74(17):1111–32. doi:10.1080/15287394.2011.586940.

    Article  CAS  PubMed  Google Scholar 

  11. Shannahan JH, Nyska A, Cesta M, Schladweiler MC, Vallant BD, Ward WO, et al. Subchronic pulmonary pathology, iron overload, and transcriptional activity after Libby amphibole exposure in rat models of cardiovascular disease. Environ Health Perspect. 2012;120(1):85–91. doi:10.1289/ehp.1103990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol. 2013;10(1):53. doi:10.1186/1743-8977-10-53.

    Article  PubMed Central  PubMed  Google Scholar 

  13. NIOSH DoHaHSC. Current Intelligence Bulletin 65 – occupational exposure to carbon nanotubes and nanofibers. NIOSH Publications and Products 2013. Available from: http://www.cdc.gov/niosh/docs/2013-145/b4.

  14. Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, et al. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 2011;8:21. doi:10.1186/1743-8977-8-21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 2013;7(7):1179–94. doi:10.3109/17435390.2012.719649.

    Article  CAS  PubMed  Google Scholar 

  16. Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269(2–3):136–47. doi:10.1016/j.tox.2009.10.017.

    Article  CAS  PubMed  Google Scholar 

  17. Silva RM, Doudrick K, Franzi LM, TeeSy C, Anderson DS, Wu Z, et al. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano. 2014;8(9):8911–31. doi:10.1021/nn503887r.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 2015;284(1):16–32. doi:10.1016/j.taap.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011;5(12):9772–87. doi:10.1021/nn2033055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, et al. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):676–82. doi:10.1289/ehp.1205693.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 2009;40(3):349–58. doi:10.1165/rcmb.2008-0276OC.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, et al. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 2014;9(4):413–22. doi:10.3109/17435390.2014.933903.

    Article  PubMed  Google Scholar 

  23. He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol. 2011;24(12):2237–48. doi:10.1021/tx200351d.

    Article  CAS  PubMed  Google Scholar 

  24. Rastrick J, Birrell M. The role of the inflammasome in fibrotic respiratory diseases. Minerva Med. 2014;105(1):9–23.

    CAS  PubMed  Google Scholar 

  25. Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, et al. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 2015. doi:10.1002/smll.201402859.

    Google Scholar 

  26. Hamilton Jr RF, Xiang C, Li M, Ka I, Yang F, Ma D, et al. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol. 2013;25(4):199–210. doi:10.3109/08958378.2013.775197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Snyder-Talkington BN, Pacurari M, Dong C, Leonard SS, Schwegler-Berry D, Castranova V, et al. Systematic analysis of multiwalled carbon nanotube-induced cellular signaling and gene expression in human small airway epithelial cells. Toxicol Sci. 2013;133(1):79–89. doi:10.1093/toxsci/kft019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, et al. A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3)(3)/ST(2) axis. Small. 2012;8(18):2904–12. doi:10.1002/smll.201200873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang X, Shannahan JH, Brown JM. IL-33 modulates chronic airway resistance changes induced by multi-walled carbon nanotubes. Inhal Toxicol. 2014;26(4):240–9. doi:10.3109/08958378.2014.880202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Brown Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shannahan, J.H., Brown, J.M. (2016). Multiwalled Carbon Nanotube-Induced Pulmonary Fibrogenesis. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics