Skip to main content

Abstract

Inflammation and immune dysfunction occur with inhalation exposure to fibrous (asbestiform) silicon oxide dusts. As research delves deeper, it is clear that despite some commonalities in the responses to mineral fibers, there appear to be distinct differences in the specific nature of the dysfunction elicited by various fibers that leads ultimately to fiber-specific disease outcomes. A growing body of evidence supports an association between asbestos exposure and autoimmune responses such as antinuclear antibodies (ANA). However, there is limited epidemiological support for an association between asbestos exposure and any specific autoimmune disease. While there are several possible reasons for this, recent data strongly suggests that a key factor lies in the physical chemistry of the fibers themselves, requiring comparative studies of different fiber types. In order to illustrate the importance of this premise, this chapter explores the current data comparing the autoantibody responses following amphibole exposure with those seen following chrysotile exposure. Both human and mouse data suggest that amphibole, but not chrysotile, increases the frequency of positive ANA tests and may increase the risk for systemic autoimmune diseases such as systemic lupus erythematosus. Asbestiform amphibole also drives production of pathogenic autoantibodies against mesothelial cells that appear to contribute to a severe and progressive pleural fibrosis. While occupational asbestos exposures may be decreasing, environmental exposures are on the rise as evidenced by multiple recent discoveries of naturally occurring asbestos. These findings emphasize the need for renewed efforts toward screening and understanding fiber-specific disease manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germolec D, Kono DH, Pfau JC, Pollard KM. Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun. 2012;39(4):285–93. PubMed. Pubmed Central PMCID: 3465484.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cooper GS, Gilbert KM, Greidinger EL, James JA, Pfau JC, Reinlib L, et al. Recent advances and opportunities in research on lupus: environmental influences and mechanisms of disease. Environ Health Perspect. 2008;116(6):695–702. PubMed. Pubmed Central PMCID: 2430222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brown JM, Pfau JC, Pershouse MA, Holian A. Silica, apoptosis, and autoimmunity. J Immunotoxicol. 2005;1(3):117–87. PubMed.

    Google Scholar 

  4. Pfau JC, Brown JM, Holian A. Silica-exposed mice generate autoantibodies to apoptotic cells. Toxicology. 2004;195(2–3):167–76. PubMed.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper GS, Wither J, Bernatsky S, Claudio JO, Clarke A, Rioux JD, et al. Occupational and environmental exposures and risk of systemic lupus erythematosus: silica, sunlight, solvents. Rheumatology. 2010;49(11):2172–80. PubMed. Pubmed Central PMCID: 2954367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. De Capitani EM, Schweller M, Silva CM, Metze K, Cerqueira EM, Bertolo MB. Rheumatoid pneumoconiosis (Caplan’s syndrome) with a classical presentation. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia. 2009;35(9):942–6. PubMed.

    Article  Google Scholar 

  7. Pfau JC, Serve KM, Noonan CW. Autoimmunity and asbestos exposure. Autoimmune Dis. 2014;2014:782045. PubMed Pubmed Central PMCID: 4022069.

    PubMed Central  PubMed  Google Scholar 

  8. Sporn TA. Mineralogy of asbestos. Recent Results Cancer Res Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2011;189:1–11. PubMed.

    CAS  PubMed  Google Scholar 

  9. Gwinn MR. Multiple modes of action of asbestos and related mineral fibers. J Toxicol Environ Health B Crit Rev. 2014;14(1–4):1–2. PubMed Pubmed Central PMCID: 3118491.

    Google Scholar 

  10. Gwinn MR, DeVoney D, Jarabek AM, Sonawane B, Wheeler J, Weissman DN, et al. Meeting report: mode(s) of action of asbestos and related mineral fibers. Environ Health Perspect. 2011;119(12):1806–10. PubMed. Pubmed Central PMCID: 3261973.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Carbone M, Yang H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res. 2012;18(3):598–604. PubMed. Pubmed Central PMCID: 3291331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Larson TC, Antao VC, Bove FJ, Cusack C. Association between cumulative fiber exposure and respiratory outcomes among Libby vermiculite workers. J Occup Environ Med/Am College Occup Environ Med. 2012;54(1):56–63. PubMed.

    Article  CAS  Google Scholar 

  13. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. PubMed Pubmed Central PMCID: 2857820.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Buck BJ, Goossens D, Metcalf RV, McLaurin B, Ren M, Freudenberger F. Naturally occurring asbestos: potential for human exposure, Southern Nevada, USA. Soil Sci Soc Am J. 2013;77:2192–204.

    Article  CAS  Google Scholar 

  15. Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR. Naturally occurring asbestos: a recurring public policy challenge. J Hazard Mater. 2008;153(1–2):1–21. PubMed.

    Article  CAS  PubMed  Google Scholar 

  16. Van Gosen BS, Blitz TA, Plumlee GS, Meeker GP, Pierson MP. Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease. Environ Geochem Health. 2013;35:419–30. PubMed.

    Article  PubMed  Google Scholar 

  17. Black B, Szeinuk J, Whitehouse AC, Levin SM, Henschke CI, Yankelevitz DF, et al. Rapid progression of pleural disease due to exposure to Libby amphibole: “Not your grandfather’s asbestos related disease”. Am J Ind Med. 2014;57(11):1197–206. PubMed.

    Article  PubMed  Google Scholar 

  18. Emri S, Demir A, Dogan M, Akay H, Bozkurt B, Carbone M, et al. Lung diseases due to environmental exposures to erionite and asbestos in Turkey. Toxicol Lett. 2002;127(1–3):251–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  19. Whitehouse AC. Asbestos-related pleural disease due to tremolite associated with progressive loss of lung function: serial observations in 123 miners, family members, and residents of Libby, Montana. Am J Ind Med. 2004;46(3):219–25. PubMed.

    Article  CAS  PubMed  Google Scholar 

  20. Whitehouse AC, Black CB, Heppe MS, Ruckdeschel J, Levin SM. Environmental exposure to Libby Asbestos and mesotheliomas. Am J Ind Med. 2008;51(11):877–80. PubMed.

    Article  PubMed  Google Scholar 

  21. Nishimura SL, Broaddus VC. Asbestos-induced pleural disease. Clin Chest Med. 1998;19(2):311–29. PubMed.

    Article  CAS  PubMed  Google Scholar 

  22. Broaddus VC, Everitt JI, Black B, Kane AB. Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B Crit Rev. 2011;14(1–4):153–78. PubMed Pubmed Central PMCID: 3118521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gevenois PA, de Maertelaer V, Madani A, Winant C, Sergent G, De Vuyst P. Asbestosis, pleural plaques and diffuse pleural thickening: three distinct benign responses to asbestos exposure. Eur Respir J. 1998;11(5):1021–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  24. Kee ST, Gamsu G, Blanc P. Causes of pulmonary impairment in asbestos-exposed individuals with diffuse pleural thickening. Am J Respir Crit Care Med. 1996;154(3 Pt 1):789–93. PubMed.

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz DA, Galvin JR, Dayton CS, Stanford W, Merchant JA, Hunninghake GW. Determinants of restrictive lung function in asbestos-induced pleural fibrosis. J Appl Physiol. 1990;68(5):1932–7. PubMed.

    CAS  PubMed  Google Scholar 

  26. McDonald JC. Mineral fibre persistence and carcinogenicity. Ind Health. 1998;36(4):372–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  27. Mossman BT, Bignon J, Corn M, Seaton A, Gee JB. Asbestos: scientific developments and implications for public policy. Science. 1990;247(4940):294–301. PubMed.

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein D, Dunnigan J, Hesterberg T, Brown R, Velasco JA, Barrera R, et al. Health risk of chrysotile revisited. Crit Rev Toxicol. 2013;43(2):154–83. PubMed Pubmed Central PMCID: 3581056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bernstein DM, Donaldson K, Decker U, Gaering S, Kunzendorf P, Chevalier J, et al. A biopersistence study following exposure to chrysotile asbestos alone or in combination with fine particles. Inhal Toxicol. 2008;20(11):1009–28. PubMed Pubmed Central PMCID: 2565272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. McDonald JC. Epidemiological significance of mineral fiber persistence in human lung tissue. Environ Health Perspect. 1994;102 Suppl 5:221–4. PubMed Pubmed Central PMCID: 1567253.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Meeker GP, Bern AM, Brownfield IK, Lowers HA, Sutley SJ, Hoefen TM, et al. The composition and morphology of amphiboles from the Rainy Creek Complex, Near Libby, Montana. Am Mineral. 2003;88:1955–69.

    Article  CAS  Google Scholar 

  32. Larson TC, Antao VC, Bove FJ. Vermiculite worker mortality: estimated effects of occupational exposure to Libby amphibole. J Occup Environ Med/Am College Occup Environ Med. 2010;52(5):555–60. PubMed.

    Article  Google Scholar 

  33. Peipins LA, Lewin M, Campolucci S, Lybarger JA, Miller A, Middleton D, et al. Radiographic abnormalities and exposure to asbestos-contaminated vermiculite in the community of Libby, Montana, USA. Environ Health Perspect. 2003;111(14):1753–9. PubMed Pubmed Central PMCID: 1241719.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Alexander BH, Raleigh KK, Johnson J, Mandel JH, Adgate JL, Ramachandran G, et al. Radiographic evidence of nonoccupational asbestos exposure from processing Libby vermiculite in Minneapolis, Minnesota. Environ Health Perspect. 2012;120(1):44–9. PubMed Pubmed Central PMCID: 3261940.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Antao VC, Larson TC, Horton DK. Libby vermiculite exposure and risk of developing asbestos-related lung and pleural diseases. Curr Opin Pulm Med. 2012;18(2):161–7. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rohs AM, Lockey JE, Dunning KK, Shukla R, Fan H, Hilbert T, et al. Low-level fiber-induced radiographic changes caused by Libby vermiculite: a 25-year follow-up study. Am J Respir Crit Care Med. 2008;177(6):630–7. PubMed Pubmed Central PMCID: 2267337.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sullivan PA. Vermiculite, respiratory disease, and asbestos exposure in Libby, Montana: update of a cohort mortality study. Environ Health Perspect. 2007;115(4):579–85. PubMed Pubmed Central PMCID: 1852671.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Koskinen K, Zitting A, Tossavainen A, Rinne JP, Roto P, Kivekas J, et al. Radiographic abnormalities among Finnish construction, shipyard and asbestos industry workers. Scand J Work Environ Health. 1998;24(2):109–17. PubMed.

    Article  CAS  PubMed  Google Scholar 

  39. Markowitz SB, Morabia A, Lilis R, Miller A, Nicholson WJ, Levin S. Clinical predictors of mortality from asbestosis in the North American Insulator Cohort, 1981 to 1991. Am J Respir Crit Care Med. 1997;156(1):101–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  40. Pfau JC, Sentissi JJ, Weller G, Putnam EA. Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA. Environ Health Perspect. 2005;113(1):25–30. PubMed Pubmed Central PMCID: 1253705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pfau JC, Blake DJ, Fritzler MJ. Autoantibody profiles of an asbestos-exposed population. In: Vogel FL, Zimmermann LF, editors. Autoimmunity: role, regulation and disorders. New York: Nova; 2009. p. 245–68.

    Google Scholar 

  42. Pfau JC, Sentissi JJ, Li S, Calderon-Garciduenas L, Brown JM, Blake DJ. Asbestos-induced autoimmunity in C57BL/6 mice. J Immunotoxicol. 2008;5(2):129–37. PubMed.

    Article  CAS  PubMed  Google Scholar 

  43. Ferro A, Zebedeo CN, Davis C, Ng KW, Pfau JC. Amphibole, but not chrysotile, asbestos induces anti-nuclear autoantibodies and IL-17 in C57BL/6 mice. J Immunotoxicol. 2013. doi:10.3109/1547691X.2013.847510. PubMed.

    PubMed  Google Scholar 

  44. Salazar KD, Copeland CB, Wood CE, Schmid JE, Luebke RW. Evaluation of anti-nuclear antibodies and kidney pathology in Lewis rats following exposure to Libby amphibole asbestos. J Immunotoxicol. 2012;10:329–33. PubMed.

    Article  PubMed  Google Scholar 

  45. Zebedeo CN, Davis C, Pena C, Ng KW, Pfau JC. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice. Toxicol Appl Pharmacol. 2014;275(3):257–64. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Markowitz SB, Levin SM, Miller A, Morabia A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American insulator cohort. Am J Respir Crit Care Med. 2013;188(1):90–6. PubMed.

    Article  PubMed  Google Scholar 

  47. Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11. PubMed.

    Article  CAS  PubMed  Google Scholar 

  48. Noonan CW, Pfau JC. Asbestos exposure and autoimmune disease. In: Nriagu J, editor. Encyclopedia of environmental health, vol. 1. New York: Elsevier; 2011. p. 193–203.

    Chapter  Google Scholar 

  49. Greaves IA. Rheumatoid “pneumoconiosis” (Caplan’s syndrome) in an asbestos worker: a 17 years’ follow-up. Thorax. 1979;34(3):404–5. PubMed Pubmed Central PMCID: 471084.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Noonan CW, Pfau JC, Larson TC, Spence MR. Nested case-control study of autoimmune disease in an asbestos-exposed population. Environ Health Perspect. 2006;114(8):1243–7. PubMed Pubmed Central PMCID: 1551997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Olsson AR, Skogh T, Axelson O, Wingren G. Occupations exposures in the work environment as determinants for rheumatoid arthritis. Occup Environ Med. 2004;61(3):233–8. PubMed Pubmed Central PMCID: 1740725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gold LS, Ward MH, Dosemeci M, De Roos AJ. Systemic autoimmune disease mortality and occupational exposures. Arthritis Rheum. 2007;56(10):3189–201. PubMed.

    Article  CAS  PubMed  Google Scholar 

  53. Salazar KD, Copeland CB, Luebke RW. Effects of Libby amphibole asbestos exposure on two models of arthritis in the Lewis rat. J Toxicol Environ Health A. 2012;75(6):351–65. PubMed.

    Article  CAS  PubMed  Google Scholar 

  54. Bunderson-Schelvan M, Pfau JC, Crouch E, Holian A. Nonpulmonary outcomes of asbestos exposure. J Toxicol Environ Health B Crit Rev. 2011;14(1–4):122–52. PubMed Pubmed Central PMCID: 3118539.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gregor A, Parkes RW, du Bois R, Turner-Warwick M. Radiographic progression of asbestosis: preliminary report. Ann N Y Acad Sci. 1979;330:147–56. PubMed.

    Article  CAS  PubMed  Google Scholar 

  56. Marchand LS, St-Hilaire S, Putnam EA, Serve KM, Pfau JC. Mesothelial cell and anti-nuclear autoantibodies associated with pleural abnormalities in an asbestos exposed population of Libby MT. Toxicol Lett. 2012;208(2):168–73. PubMed Pubmed Central PMCID: 3241886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tamura M, Tokuyama T, Kasuga H, Yoneda T, Miyazaki R, Narita N. [Study on correlation between chest X-P course findings and change in antinuclear antibody in asbestos plant employees]. Sangyo Eiseigaku Zasshi J Occup Health. 1996;38(3):138–41. PubMed.

    CAS  Google Scholar 

  58. Turner-Warwick M. Immunology and asbestosis. Proc R Soc Med. 1973;66(9):927–30. PubMed Pubmed Central PMCID: 1645453.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Tamura M, Liang D, Tokuyama T, Yoneda T, Kasuga H, Narita N, et al. [Study on the relationship between appearance of autoantibodies and chest X-ray findings of asbestos plant employees]. Sangyo igaku Japanese J Ind Health. 1993;35(5):406–12. PubMed.

    Article  CAS  Google Scholar 

  60. del Papa N, Meroni PL, Barcellini W, Sinico A, Radice A, Tincani A, et al. Antibodies to endothelial cells in primary vasculitides mediate in vitro endothelial cytotoxicity in the presence of normal peripheral blood mononuclear cells. Clin Immunol Immunopathol. 1992;63(3):267–74. PubMed.

    Article  PubMed  Google Scholar 

  61. Ihn H, Sato S, Fujimoto M, Igarashi A, Yazawa N, Kubo M, et al. Characterization of autoantibodies to endothelial cells in systemic sclerosis (SSc): association with pulmonary fibrosis. Clin Exp Immunol. 2000;119(1):203–9. PubMed Pubmed Central PMCID: 1905540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Renaudineau Y, Dugue C, Dueymes M, Youinou P. Antiendothelial cell antibodies in systemic lupus erythematosus. Autoimmun Rev. 2002;1(6):365–72. PubMed.

    Article  CAS  PubMed  Google Scholar 

  63. Chizzolini C, Raschi E, Rezzonico R, Testoni C, Mallone R, Gabrielli A, et al. Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis Rheum. 2002;46(6):1602–13. PubMed.

    Article  CAS  PubMed  Google Scholar 

  64. Fineschi S, Goffin L, Rezzonico R, Cozzi F, Dayer JM, Meroni PL, et al. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of toll-like receptor 4. Arthritis Rheum. 2008;58(12):3913–23. PubMed.

    Article  CAS  PubMed  Google Scholar 

  65. Ronda N, Raschi E, Testoni C, Borghi MO, Gatti R, Dayer JM, et al. Anti-fibroblast antibodies in systemic sclerosis. Isr Med Assoc J IMAJ. 2002;4(11 Suppl):858–64. PubMed.

    CAS  PubMed  Google Scholar 

  66. Pfau JC, Li S, Holland S, Sentissi JJ. Alteration of fibroblast phenotype by asbestos-induced autoantibodies. J Immunotoxicol. 2011;8(2):159–69. PubMed Pubmed Central PMCID: 3201780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Serve KM, Black B, Szeinuk J, Pfau JC. Asbestos-associated mesothelial cell autoantibodies promote collagen deposition in vitro. Inhal Toxicol. 2013;25(14):774–84. PubMed.

    Article  CAS  PubMed  Google Scholar 

  68. Zouali M, Jefferis R, Eyquem A. IgG subclass distribution of autoantibodies to DNA and to nuclear ribonucleoproteins in autoimmune diseases. Immunology. 1984;51(3):595–600. PubMed Pubmed Central PMCID: 1454452.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Morell A, Skvaril F, Steinberg AG, Van Loghem E, Terry WD. Correlations between the concentrations of the four sub-classes of IgG and Gm Allotypes in normal human sera. J Immunol. 1972;108(1):195–206. PubMed.

    CAS  PubMed  Google Scholar 

  70. Jean WC, Dalmau J, Ho A, Posner JB. Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu-associated paraneoplastic encephalomyelitis. Neurology. 1994;44(1):140–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  71. van der Neut KM, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–7. PubMed.

    Article  Google Scholar 

  72. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716–25. PubMed.

    Article  CAS  PubMed  Google Scholar 

  73. Winters CA, Hill WG, Rowse K, Black B, Kuntz SW, Weinert C. Descriptive analysis of the respiratory health status of persons exposed to Libby amphibole asbestos. BMJ Open. 2012;2(6):1–9. PubMed Pubmed Central PMCID: 3532993.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the intellectual contributions of the Libby Epidemiology Research Program (LERP): Icahn School of Medicine at Sinai including Raja Flores MD and Jaime Szeinuk MD; rheumatology consultant Roger Diegel, MD, Kalispell MT; and the Center for Asbestos Related Diseases, Brad Black MD. This work was funded in part by the LERP Grant from CDC/ATSDR TS000099-01 and by the Idaho COBRE P20 GM103408. We dedicate this work in the memory of Dr. Stephen Levin, Mount Sinai Medical Center, New York, whose insights and vision spearheaded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Pfau Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Pfau, J.C., Serve, K., Woods, L., Noonan, C. (2016). Asbestos Exposure and Autoimmunity. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics