Skip to main content

Abstract

The purpose of this chapter is to provide an overview of macrophage subtype and multinucleated giant cell classification with a specific discussion of their role(s) in response to particulates and other foreign bodies. Topics covered for the different subtypes include the following: environmental factors involved in their generation, functional characterization, disease associations, and interactions with particulates. This chapter is separated into three major parts. The first portion describes the normal structure and functions of the macrophage. Second, the currently published macrophage subsets are outlined. The classifications included in the discussion are based on function (“M” polarization) rather than anatomical position (tissue-specific macrophages – Kupffer cells, alveolar macrophages, etc.). As shown in Fig. 1.1, the ontogeny of the various types of macrophages being discussed in this chapter depends on the pathway of activation. The third major section focuses on multinucleated giant cells, which are formed by fusion of individual macrophages. The ontogeny of each subset will be discussed and the current literature regarding particulate/foreign-body interaction will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Arg-1:

Arginase-1

CD:

Cluster of differentiation

Ch3l3 (Ym1):

Chitinase 3-like 3

CXCL:

Chemokine (C-X-C motif) ligand

FcγR:

Fc-gamma receptor

GC:

Glucocorticoids

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HIV:

Human immunodeficiency virus

IFNγ:

Interferon gamma

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LIF:

Leukemia inhibitory factor

M-CSF:

Macrophage colony-stimulating factor

MGC:

Multinucleated giant cell

MHC:

Major histocompatibility complex

MMP9:

Matrix metalloproteinase 9

RELMα (FIZZ1):

Resistin-like molecule alpha

ROS:

Reactive oxygen species

TAM:

Tumor-associated macrophage

TGFβ:

Transforming growth factor beta

Th1/Th2:

Type 1 or type 2 helper T cells

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  1. van Furth R, Blusse van Oud Alblas A. The current view on the origin of pulmonary macrophages. Pathol Res Pract. 1982;175(1):38–49.

    Article  PubMed  Google Scholar 

  2. Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW. Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science. 1976;192(4243):1016–18.

    Article  CAS  PubMed  Google Scholar 

  3. Byersdorfer CA, Chaplin DD. Visualization of early APC/T cell interactions in the mouse lung following intranasal challenge. J Immunol. 2001;167(12):6756–64.

    Article  CAS  PubMed  Google Scholar 

  4. Migliaccio CT, Hamilton Jr RF, Holian A. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure. Toxicol Appl Pharmacol. 2005;205(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  5. Toews GB, Vial WC, Dunn MM, Guzzetta P, Nunez G, Stastny P, et al. The accessory cell function of human alveolar macrophages in specific T cell proliferation. J Immunol. 1984;132(1):181–6.

    CAS  PubMed  Google Scholar 

  6. Brodsky FM, Guagliardi LE. The cell biology of antigen processing and presentation. Annu Rev Immunol. 1991;9:707–44. doi:10.1146/annurev.iy.09.040191.003423.

    Article  CAS  PubMed  Google Scholar 

  7. Jabbour AJ, Holian A, Scheule RK. Lung lining fluid modification of asbestos bioactivity for the alveolar macrophage. Toxicol Appl Pharmacol. 1991;110(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  8. Strieter RM, Remick DG, Lynch 3rd JP, Genord M, Raiford C, Spengler R, et al. Differential regulation of tumor necrosis factor-alpha in human alveolar macrophages and peripheral blood monocytes: a cellular and molecular analysis. Am J Respir Cell Mol Biol. 1989;1(1):57–63. doi:10.1165/ajrcmb/1.1.57.

    Article  CAS  PubMed  Google Scholar 

  9. Gordon S. The macrophage. Bioessays. 1995;17(11):977–86.

    Article  CAS  PubMed  Google Scholar 

  10. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  11. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. doi:10.1038/nri2448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports. 2014;6:13. doi:10.12703/P6-13.

    Google Scholar 

  13. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi:10.1016/j.immuni.2014.06.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A. 2004;101(13):4560–5. doi:10.1073/pnas.0400983101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83. doi:10.4049/jimmunol.0900473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50. doi:10.1146/annurev.immunol.15.1.323.

    Article  CAS  PubMed  Google Scholar 

  17. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94(10):5243–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011;80(9):915–25. doi:10.1038/ki.2011.217.

    Article  CAS  PubMed  Google Scholar 

  19. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet. 2011;20(4):790–805. doi:10.1093/hmg/ddq523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kaczmarek M, Nowicka A, Kozlowska M, Zurawski J, Batura-Gabryel H, Sikora J. Evaluation of the phenotype pattern of macrophages isolated from malignant and non-malignant pleural effusions. Tumour Biol. 2011;32(6):1123–32. doi:10.1007/s13277-011-0214-1.

    Article  CAS  PubMed  Google Scholar 

  21. Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, et al. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol. 2011;187(5):2181–92. doi:10.4049/jimmunol.1003460.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol. 2010;87(4):599–608. doi:10.1189/jlb.1009673.

    Article  CAS  PubMed  Google Scholar 

  23. Guo Z, Wen Z, Qin A, Zhou Y, Liao Z, Liu Z, et al. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+ regulatory T cells. J Immunol. 2013;190(8):4337–48. doi:10.4049/jimmunol.1203233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dinarello CA. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–17. doi:10.1002/eji.201141550.

    Article  CAS  PubMed  Google Scholar 

  25. Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26(11):1271–86. doi:10.1016/j.biomaterials.2004.04.035.

    Article  CAS  PubMed  Google Scholar 

  26. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface. 2014;11(93):20130962. doi:10.1098/rsif.2013.0962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, et al. Macrophages-key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101(10):3033–45. doi:10.1002/jbm.a.34599.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Antonios JK, Yao Z, Li C, Rao AJ, Goodman SB. Macrophage polarization in response to wear particles in vitro. Cell Mol Immunol. 2013;10(6):471–82. doi:10.1038/cmi.2013.39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Webb DC, McKenzie AN, Foster PS. Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein. J Biol Chem. 2001;276(45):41969–76.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation. 2013;36(4):921–31. doi:10.1007/s10753-013-9621-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Migliaccio CT, Buford MC, Jessop F, Holian A. The IL-4Ralpha pathway in macrophages and its potential role in silica-induced pulmonary fibrosis. J Leukoc Biol. 2008;83(3):630–9. doi:jlb.0807533 [pii] 10.1189/jlb.0807533

  32. Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, et al. Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A. 2006;103(20):7777–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, et al. Alternative versus classical activation of macrophages. Pathobiology. 1999;67(5–6):222–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–12.

    Article  CAS  PubMed  Google Scholar 

  35. Spencer M, Yao-Borengasser A, Unal R, Rasouli N, Gurley CM, Zhu B, et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010;299(6):E1016–27. doi:10.1152/ajpendo.00329.2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.

    Article  CAS  PubMed  Google Scholar 

  37. Luo C, Chen M, Madden A, Xu H. Expression of complement components and regulators by different subtypes of bone marrow-derived macrophages. Inflammation. 2012;35(4):1448–61. doi:10.1007/s10753-012-9458-1.

    Article  CAS  PubMed  Google Scholar 

  38. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80(6):1298–307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhang W, Xu W, Xiong S. Macrophage differentiation and polarization via phosphatidylinositol 3-kinase/Akt-ERK signaling pathway conferred by serum amyloid P component. J Immunol. 2011;187(4):1764–77. doi:10.4049/jimmunol.1002315.

    Article  CAS  PubMed  Google Scholar 

  40. Asai A, Nakamura K, Kobayashi M, Herndon DN, Suzuki F. CCL1 released from M2b macrophages is essentially required for the maintenance of their properties. J Leukoc Biol. 2012;92(4):859–67. doi:10.1189/jlb.0212107.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi T, Onodera S, Kondo E, Tohyama H, Fujiki H, Yokoyama A, et al. Impaired fracture healing in macrophage migration inhibitory factor-deficient mice. Osteoporos Int. 2011;22(6):1955–65. doi:10.1007/s00198-010-1385-0.

    Article  CAS  PubMed  Google Scholar 

  42. Pradhan V, Patwardhan M, Ghosh K. Fc gamma receptor polymorphisms in systemic lupus erythematosus and their correlation with the clinical severity of the disease. Indian J Hum Genet. 2008;14(3):77–81. doi:10.4103/0971-6866.44998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205(13):3007–18. doi:10.1084/jem.20081165.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lugo-Villarino G, Verollet C, Maridonneau-Parini I, Neyrolles O. Macrophage polarization: convergence point targeted by mycobacterium tuberculosis and HIV. Front Immunol. 2011;2:43. doi:10.3389/fimmu.2011.00043.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146. doi:10.1146/annurev.immunol.24.021605.090737.

    Article  CAS  PubMed  Google Scholar 

  46. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771–7.

    Article  CAS  PubMed  Google Scholar 

  47. Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y, Kamanaka M, et al. IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog. 2008;4(2):e1000004. doi:10.1371/journal.ppat.1000004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012;189(7):3508–20. doi:10.4049/jimmunol.1200662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  CAS  PubMed  Google Scholar 

  50. Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy. 2011;3(4 Suppl):23–6. doi:10.2217/imt.11.30.

    Article  CAS  PubMed  Google Scholar 

  51. Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 2007;110(13):4319–30. doi:10.1182/blood-2007-02-072587.

    Article  CAS  PubMed  Google Scholar 

  52. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013;62(12):1757–68. doi:10.1007/s00262-013-1487-6.

    Article  CAS  PubMed  Google Scholar 

  53. Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer. 2009;125(2):367–73. doi:10.1002/ijc.24401.

    Article  CAS  PubMed  Google Scholar 

  54. Birnie KA, Yip YY, Ng DC, Kirschner MB, Reid G, Prele CM et al. Loss of mir-223 and JNK signalling contribute to elevated stathmin in malignant pleural mesothelioma. Mol Cancer Res. 2015;13(7):1106–18. doi:10.1158/1541-7786.MCR-14-0442.

    Google Scholar 

  55. Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys. 2010;502(1):1–7. doi:10.1016/j.abb.2010.06.015.

    Article  CAS  PubMed  Google Scholar 

  56. Christie C, Madsen SJ, Peng Q, Hirschberg H. Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Ther Deliv. 2015;6(3):371–84. doi:10.4155/tde.14.121.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang Y, Fei W, Cen X, Tang Y, Liang X. Near-infrared light activatable multimodal gold nanostructures platform: an emerging paradigm for cancer therapy. Current Cancer Drug Targets. 2015;15(5):406–22. doi: 10.2174/1568009615666150407125333.

    Google Scholar 

  58. Wang HY, Hua XW, Wu FG, Li B, Liu P, Gu N, et al. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces. 2015;7(13):7082–92. doi:10.1021/acsami.5b01214.

    Article  CAS  PubMed  Google Scholar 

  59. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31(7):1506–16. doi:10.1161/ATVBAHA.110.221127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Buttari B, Profumo E, Rigano R. Crosstalk between red blood cells and the immune system and its impact on atherosclerosis. BioMed Res Int. 2015;2015:616834. doi:10.1155/2015/616834.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther. 2015;37(4):914–23. doi:10.1016/j.clinthera.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  62. Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res. 2012;110(1):20–33. doi:10.1161/CIRCRESAHA.111.247577.

    Article  CAS  PubMed  Google Scholar 

  63. Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1. doi:10.3389/fphys.2012.00001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262(1):153–66. doi:10.1111/imr.12218.

    Article  CAS  PubMed  Google Scholar 

  65. Ying Z, Kampfrath T, Thurston G, Farrar B, Lippmann M, Wang A, et al. Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicol Sci. 2009;111(1):80–8. doi:10.1093/toxsci/kfp004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Brook RD, Rajagopalan S, Pope 3rd CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. doi:10.1161/CIR.0b013e3181dbece1.

    Article  CAS  PubMed  Google Scholar 

  67. Rylance J, Fullerton DG, Scriven J, Aljurayyan AN, Mzinza D, Barrett S, et al. Household Air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am J Respir Cell Mol Biol. 2015;52(5):584–93. doi:10.1165/rcmb.2014-0188OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dittmar T, Zanker KS. Cell fusion in health and disease. Volume II: cell fusion in disease. Introduction. Adv Exp Med Biol. 2011;714:1–3. doi:10.1007/978-94-007-0782-5_1.

    CAS  PubMed  Google Scholar 

  69. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968–73. doi:10.1038/nature02069.

    Article  CAS  PubMed  Google Scholar 

  70. Lluis F, Cosma MP. Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J Cell Physiol. 2010;223(1):6–13. doi:10.1002/jcp.22003.

    CAS  PubMed  Google Scholar 

  71. van Maarsseveen TC, Vos W, van Diest PJ. Giant cell formation in sarcoidosis: cell fusion or proliferation with non-division? Clin Exp Immunol. 2009;155(3):476–86. doi:10.1111/j.1365-2249.2008.03841.x.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Helming L, Gordon S. Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol. 2007;37(1):33–42. doi:10.1002/eji.200636788.

    Article  CAS  PubMed  Google Scholar 

  73. Machlus KR, Italiano Jr JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–96. doi:10.1083/jcb.201304054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Aterman K, Remmele W, Smith M. Touton and his “xanthelasmatic giant cell.” A selective review of multinucleated giant cells. Am J Dermatopathol. 1988;10(3):257–69.

    Article  CAS  PubMed  Google Scholar 

  75. Langhans T. Ueber Riesenzellen mit wandständigen Kernen in Tuberkeln und die fibröse Form des Tuberkels. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin. 1868;42(3):382–404. doi:10.1007/bf02006420.

    Google Scholar 

  76. Touton K. Ueber das Xanthom, insbesondere dessen Histiologie und Histiogenese. Vierteljahresschrift für Dermatologie und Syphilis. 1885;17(1–4):3–53. doi:10.1007/bf02199761.

    Google Scholar 

  77. Papadimitriou JM, Sforsina D, Papaelias L. Kinetics of multinucleate giant cell formation and their modification by various agents in foreign body reactions. Am J Pathol. 1973;73(2):349–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhao OH, Anderson JM, Hiltner A, Lodoen GA, Payet CR. Theoretical analysis on cell size distribution and kinetics of foreign-body giant cell formation in vivo on polyurethane elastomers. J Biomed Mater Res. 1992;26(8):1019–38. doi:10.1002/jbm.820260805.

    Article  CAS  PubMed  Google Scholar 

  79. Honma T, Hamasaki T. Ultrastructure of multinucleated giant cell apoptosis in foreign-body granuloma. Virchows Arch. 1996;428(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  80. Anderson JM. Multinucleated giant cells. Curr Opin Hematol. 2000;7(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  81. McNally AK, Anderson JM. Macrophage fusion and multinucleated giant cells of inflammation. In: Dittmar T, Zanker KS, editors. Cell fusion in health and disease – I: cell fusion in health. Dordrecht: Springer; 2011. p. 97–111.

    Google Scholar 

  82. McInnes A, Rennick DM. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J Exp Med. 1988;167(2):598–611.

    Article  CAS  PubMed  Google Scholar 

  83. DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J Immunol. 1997;158(7):3385–90.

    CAS  PubMed  Google Scholar 

  84. Weinberg JB, Hobbs MM, Misukonis MA. Recombinant human gamma-interferon induces human monocyte polykaryon formation. Proc Natl Acad Sci U S A. 1984;81(14):4554–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147(5):1487–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Kondo Y, Yasui K, Yashiro M, Tsuge M, Kotani N, Morishima T. Multi-nucleated giant cell formation from human cord blood monocytes in vitro, in comparison with adult peripheral blood monocytes. Clin Exp Immunol. 2009;158(1):84–90. doi:10.1111/j.1365-2249.2009.03990.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sakai H, Okafuji I, Nishikomori R, Abe J, Izawa K, Kambe N, et al. The CD40-CD40L axis and IFN-gamma play critical roles in Langhans giant cell formation. Int Immunol. 2012;24(1):5–15. doi:10.1093/intimm/dxr088.

    Article  CAS  PubMed  Google Scholar 

  88. McNally AK, Anderson JM. Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Pathol. 2003;163(3):1147–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Abe E, Miyaura C, Tanaka H, Shiina Y, Kuribayashi T, Suda S, et al. 1 alpha,25-dihydroxyvitamin D3 promotes fusion of mouse alveolar macrophages both by a direct mechanism and by a spleen cell-mediated indirect mechanism. Proc Natl Acad Sci U S A. 1983;80(18):5583–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Hassan NF, Kamani N, Meszaros MM, Douglas SD. Induction of multinucleated giant cell formation from human blood-derived monocytes by phorbol myristate acetate in in vitro culture. J Immunol. 1989;143(7):2179–84.

    CAS  PubMed  Google Scholar 

  91. Takashima T, Ohnishi K, Tsuyuguchi I, Kishimoto S. Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human blood monocytes by IFN-gamma and IL-4. J Immunol. 1993;150(7):3002–10.

    CAS  PubMed  Google Scholar 

  92. Miyamoto T, Suda T. Molecules regulating macrophage fusions. In: Larsson LI, editor. Cell fusions: regulation and control. Dordrecht: Springer; 2011. p. 233–48. doi:10.1007/978-90-481-9772-9_11.

    Google Scholar 

  93. Vignery A. Macrophage fusion: the making of a new cell. In: Larsson LI, editor. Cell fusions: regulation and control. Dordrecht: Springer; 2011. p. 219–31. doi:10.1007/978-90-481-9772-9_10.

    Google Scholar 

  94. Helming L, Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol. 2009;19(10):514–22. doi:10.1016/j.tcb.2009.07.005.

    Article  CAS  PubMed  Google Scholar 

  95. Quinn MT, Schepetkin IA. Role of NADPH oxidase in formation and function of multinucleated giant cells. J Innate Immun. 2009;1(6):509–26. doi:10.1159/000228158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, et al. Genetic basis of cell-cell fusion mechanisms. Trends Genet TIG. 2013;29(7):427–37. doi:10.1016/j.tig.2013.01.011.

    Article  CAS  PubMed  Google Scholar 

  97. MacLauchlan S, Skokos EA, Meznarich N, Zhu DH, Raoof S, Shipley JM, et al. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol. 2009;85(4):617–26. doi:10.1189/jlb.1008588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J Leukoc Biol. 2007;82(6):1542–53. doi:10.1189/jlb.0107058.

    Article  CAS  PubMed  Google Scholar 

  99. Miyamoto T. STATs and macrophage fusion. Jakstat. 2013;2(3):e24777. doi:10.4161/jkst.24777.

    PubMed Central  PubMed  Google Scholar 

  100. Jay SM, Skokos E, Laiwalla F, Krady MM, Kyriakides TR. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am J Pathol. 2007;171(2):632–40. doi:10.2353/ajpath.2007.061213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. McNally AK, Macewan SR, Anderson JM. Alpha subunit partners to beta1 and beta2 integrins during IL-4-induced foreign body giant cell formation. J Biomed Mater Res A. 2007;82(3):568–74. doi:10.1002/jbm.a.31161.

    Google Scholar 

  102. Lemaire I, Falzoni S, Adinolfi E. Purinergic signaling in giant cell formation. Front Biosci (Elite Ed). 2012;4:41–55.

    Article  Google Scholar 

  103. Helming L, Winter J, Gordon S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J Cell Sci. 2009;122(Pt 4):453–9. doi:10.1242/jcs.037200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Enelow RI, Sullivan GW, Carper HT, Mandell GL. Cytokine-induced human multinucleated giant cells have enhanced candidacidal activity and oxidative capacity compared with macrophages. J Infect Dis. 1992;166(3):664–8.

    Article  CAS  PubMed  Google Scholar 

  105. Schlesinger L, Musson RA, Johnston Jr RB. Functional and biochemical studies of multinucleated giant cells derived from the culture of human monocytes. J Exp Med. 1984;159(4):1289–94.

    Article  CAS  PubMed  Google Scholar 

  106. Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C, Bon H, et al. Langhans giant cells from M tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J Pathol. 2007;211(1):76–85. doi:10.1002/path.2092.

    Article  CAS  PubMed  Google Scholar 

  107. DeFife KM, Jenney CR, Colton E, Anderson JM. Cytoskeletal and adhesive structural polarizations accompany IL-13-induced human macrophage fusion. J Histochem Cytochem. 1999;47(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G, Payet CR. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res. 1991;25(2):177–83. doi:10.1002/jbm.820250205.

    Article  CAS  PubMed  Google Scholar 

  109. Zhu XW, Price NM, Gilman RH, Recarvarren S, Friedland JS. Multinucleate giant cells release functionally unopposed matrix metalloproteinase-9 in vitro and in vivo. J Infect Dis. 2007;196(7):1076–9. doi:10.1086/521030.

    Article  CAS  PubMed  Google Scholar 

  110. Park JK, Rosen A, Saffitz JE, Asimaki A, Litovsky SH, Mackey-Bojack SM, et al. Expression of cathepsin K and tartrate-resistant acid phosphatase is not confined to osteoclasts but is a general feature of multinucleated giant cells: systematic analysis. Rheumatology. 2013;52(8):1529–33. doi:10.1093/rheumatology/ket184.

    Article  CAS  PubMed  Google Scholar 

  111. Cowan RW, Singh G. Giant cell tumor of bone: a basic science perspective. Bone. 2013;52(1):238–46. doi:10.1016/j.bone.2012.10.002.

    Article  PubMed  Google Scholar 

  112. Lau YS, Sabokbar A, Gibbons CL, Giele H, Athanasou N. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol. 2005;36(9):945–54. doi:10.1016/j.humpath.2005.07.005.

    Article  CAS  PubMed  Google Scholar 

  113. Castonguay MC, Ryu JH, Yi ES, Tazelaar HD. Granulomas and giant cells in hypersensitivity pneumonitis. Hum Pathol. 2015;46(4):607–13. doi:10.1016/j.humpath.2014.12.017.

    Article  CAS  PubMed  Google Scholar 

  114. Kawanami O, Basset F, Barrios R, Lacronique JG, Ferrans VJ, Crystal RG. Hypersensitivity pneumonitis in man. Light- and electron-microscopic studies of 18 lung biopsies. Am J Pathol. 1983;110(3):275–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Prieditis H, Adamson IY. Alveolar macrophage kinetics and multinucleated giant cell formation after lung injury. J Leukoc Biol. 1996;59(4):534–8.

    CAS  PubMed  Google Scholar 

  116. Warheit DB, Sayes CM, Frame SR, Reed KL. Pulmonary exposures to Sepiolite nanoclay particulates in rats: resolution following multinucleate giant cell formation. Toxicol Lett. 2010;192(3):286–93. doi:10.1016/j.toxlet.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  117. Beno M, Hurbankova M, Dusinska M, Cerna S, Volkovova K, Staruchova M, et al. Multinucleate cells (MNC) as sensitive semiquantitative biomarkers of the toxic effect after experimental fibrous dust and cigarette smoke inhalation by rats. Exp Toxicol Pathol. 2005;57(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  118. Silva RM, Xu J, Saiki C, Anderson DS, Franzi LM, Vulpe CD, et al. Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Part Fibre Toxicol. 2014;11:52. doi:10.1186/s12989-014-0052-6.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269(2–3):136–47. doi:10.1016/j.tox.2009.10.017.

    Article  CAS  PubMed  Google Scholar 

  120. Nemery B, Abraham JL. Hard metal lung disease: still hard to understand. Am J Respir Crit Care Med. 2007;176(1):2–3. doi:10.1164/rccm.200704-527ED.

    Article  PubMed  Google Scholar 

  121. Tanaka J, Moriyama H, Terada M, Takada T, Suzuki E, Narita I, et al. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease. BMJ. 2014;4(3):e004407. doi:10.1136/bmjopen-2013-004407.

    Article  Google Scholar 

  122. Freiman DG, Hardy HL. Beryllium disease. The relation of pulmonary pathology to clinical course and prognosis based on a study of 130 cases from the U.S. beryllium case registry. Hum Pathol. 1970;1(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  123. Martinez VG, Escoda-Ferran C, Tadeu Simoes I, Arai S, Orta Mascaro M, Carreras E, et al. The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cell Mol Immunol. 2014;11(4):343–54. doi:10.1038/cmi.2014.12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Chang NC, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH, et al. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem. 2001;276(20):17497–506.

    Article  CAS  PubMed  Google Scholar 

  125. Giannetti N, Moyse E, Ducray A, Bondier JR, Jourdan F, Propper A, et al. Accumulation of Ym1/2 protein in the mouse olfactory epithelium during regeneration and aging. Neuroscience. 2004;123(4):907–17.

    Article  CAS  PubMed  Google Scholar 

  126. Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, et al. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun. 2005;73(1):385–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GG. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol. 2002;71(4):597–602.

    CAS  PubMed  Google Scholar 

  128. Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem. 2002;277(45):42821–9.

    Article  CAS  PubMed  Google Scholar 

  129. Limas C. The spectrum of primary cutaneous elastolytic granulomas and their distinction from granuloma annulare: a clinicopathological analysis. Histopathology. 2004;44(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  130. Mahadeva U, Martin JP, Patel NK, Price AB. Granulomatous ulcerative colitis: a re-appraisal of the mucosal granuloma in the distinction of Crohn’s disease from ulcerative colitis. Histopathology. 2002;41(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  131. Favara BE, Jaffe R. The histopathology of Langerhans cell histiocytosis. Br J Cancer Suppl. 1994;23:S17–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Koizumi F, Matsuno H, Wakaki K, Ishii Y, Kurashige Y, Nakamura H. Synovitis in rheumatoid arthritis: scoring of characteristic histopathological features. Pathol Int. 1999;49(4):298–304.

    Article  CAS  PubMed  Google Scholar 

  133. Hunder GG, Bloch DA, Michel BA, Stevens MB, Arend WP, Calabrese LH, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 1990;33(8):1122–8.

    Article  CAS  PubMed  Google Scholar 

  134. Kim KR, Scully RE. Peritoneal keratin granulomas with carcinomas of endometrium and ovary and atypical polypoid adenomyoma of endometrium. A clinicopathological analysis of 22 cases. Am J Surg Pathol. 1990;14(10):925–32.

    Article  CAS  PubMed  Google Scholar 

  135. Bayliss OB. The giant cell in cholesterol resorption. Br J Exp Pathol. 1976;57(5):610–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Lai S, Zhou X. Inflammatory cells in tissues of gout patients and their correlations with comorbidities. Open Rheumatol J. 2013;7:26–31. doi:10.2174/1874312901307010026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100. doi:10.1016/j.smim.2007.11.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Critic Rev. 2007;10 Suppl 1:1–269. doi:10.1080/10937400701597766.

    Article  CAS  Google Scholar 

  139. Black MM, Epstein WL. Formation of multinucleate giant cells in organized epitheloid cell granulomas. Am J Pathol. 1974;74(2):263–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Nemery B, Verbeken EK, Demedts M. Giant cell interstitial pneumonia (hard metal lung disease, cobalt lung). Semin Respir Critic Care Med. 2001;22(4):435–48. doi:10.1055/s-2001-17386.

    Article  CAS  Google Scholar 

  141. Takemura T, Rom WN, Ferrans VJ, Crystal RG. Morphologic characterization of alveolar macrophages from subjects with occupational exposure to inorganic particles. Am Rev Respir Dis. 1989;140(6):1674–85. doi:10.1164/ajrccm/140.6.1674.

    Article  CAS  PubMed  Google Scholar 

  142. Marchiori E, Lourenco S, Gasparetto TD, Zanetti G, Mano CM, Nobre LF. Pulmonary talcosis: imaging findings. Lung. 2010;188(2):165–71. doi:10.1007/s00408-010-9230-y.

    Article  PubMed  Google Scholar 

  143. Ko CJ, Glusac EJ. Noninfectious granulomas. In: Elder DE, editor. Lever’s histopathology of the skin. 11 ed. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 427–57.

    Google Scholar 

  144. Hunt AC, Bothwell PW. Histological findings in human brucellosis. J Clin Pathol. 1967;20(3):267–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Rosado FG, Stratton CW, Mosse CA. Clinicopathologic correlation of epidemiologic and histopathologic features of pediatric bacterial lymphadenitis. Archiv Pathol Lab Med. 2011;135(11):1490–3. doi:10.5858/arpa.2010-0581-OA.

    Article  Google Scholar 

  146. Lockwood DN, Lucas SB, Desikan KV, Ebenezer G, Suneetha S, Nicholls P. The histological diagnosis of leprosy type 1 reactions: identification of key variables and an analysis of the process of histological diagnosis. J Clin Pathol. 2008;61(5):595–600. doi:10.1136/jcp.2007.053389.

    Article  CAS  PubMed  Google Scholar 

  147. Barrett AW, Villarroel Dorrego M, Hodgson TA, Porter SR, Hopper C, Argiriadou AS, et al. The histopathology of syphilis of the oral mucosa. J Oral Pathol Med. 2004;33(5):286–91. doi:10.1111/j.0904-2512.2004.00099.x.

    Article  CAS  PubMed  Google Scholar 

  148. Elston DM. Fungal Infections. In: Elston DM, Ferringer T, Peckham S, High WA, DiCaudo DJ, Ko CJ, editors. Dermatopathology. 2 ed. Philadelphia: Elsevier-Saunders; 2014. p. 270–85.

    Google Scholar 

  149. Das R, Dey P, Chakrabarti A, Ray P. Fine-needle aspiration biopsy in fungal infections. Diagn Cytopathol. 1997;16(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  150. Shibuya K, Hirata A, Omuta J, Sugamata M, Katori S, Saito N, et al. Granuloma and cryptococcosis. J Infect Chemother. 2005;11(3):115–22. doi:10.1007/s10156-005-0387-x.

    Article  PubMed  Google Scholar 

  151. Araya J, Kawabata Y, Tomichi N, Kaneko K, Hayashi K, Iwabuchi K, et al. Allergic inflammatory reaction is involved in necrosis of human pulmonary dirofilariasis. Histopathology. 2007;51(4):484–90. doi:10.1111/j.1365-2559.2007.02822.x.

    Article  CAS  PubMed  Google Scholar 

  152. Gatrill AJ, Mackenzie CD, McMahon JE, Williams JF, Guderian RH. A histocytochemical study of the macrophages present in tissue responses to adult Onchocerca volvulus. Histochem J. 1987;19(9):509–19.

    Article  CAS  PubMed  Google Scholar 

  153. Mehregan DR, Mehregan AH, Mehregan DA. Histologic diagnosis of cutaneous leishmaniasis. Clin Dermatol. 1999;17(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  154. Geboes K, el-Dosoky I, el-Wahab A, Abou Almagd K. The immunopathology of Schistosoma mansoni granulomas in human colonic schistosomiasis. Virchows Archiv. 1990;416(6):527–34.

    Google Scholar 

  155. Fraser WJ, Haffejee Z, Cooper K. Rheumatic Aschoff nodules revisited: an immunohistological reappraisal of the cellular component. Histopathology. 1995;27(5):457–61.

    Article  CAS  PubMed  Google Scholar 

  156. Chopra P, Wanniang J, Sampath KA. Immunohistochemical and histochemical profile of Aschoff bodies in rheumatic carditis in excised left atrial appendages: an immunoperoxidase study in fresh and paraffin-embedded tissue. Int J Cardiol. 1992;34(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  157. Stehbens WE, Zuccollo JM. Anitschkow myocytes or cardiac histiocytes in human hearts. Pathology. 1999;31(2):98–101.

    Article  CAS  PubMed  Google Scholar 

  158. Krueger D. Clinical impact of mTOR inhibitors on the management of subependymal Giant cell astrocytomas in tuberous sclerosis complex. Int J Clin Rev. 2011;08:10. doi:10.5275/ijcr.2011.08.10.

  159. Rickert CH. Cortical dysplasia: neuropathological aspects. Childs Nerv Syst. 2006;22(8):821–6. doi:10.1007/s00381-006-0126-3.

    Article  PubMed  Google Scholar 

  160. Gomez-Mateo Mdel C, Monteagudo C. Nonepithelial skin tumors with multinucleated giant cells. Semin Diagn Pathol. 2013;30(1):58–72. doi:10.1053/j.semdp.2012.01.004.

    Article  PubMed  Google Scholar 

  161. Magro G, Amico P, Vecchio GM, Caltabiano R, Castaing M, Kacerovska D, et al. Multinucleated floret-like giant cells in sporadic and NF1-associated neurofibromas: a clinicopathologic study of 94 cases. Virchows Arch. 2010;456(1):71–6. doi:10.1007/s00428-009-0859-y.

    Article  CAS  PubMed  Google Scholar 

  162. Hassanein A, Telang G, Benedetto E, Spielvogel R. Subungual myxoid pleomorphic fibroma. Am J Dermatopathol. 1998;20(5):502–5.

    Article  CAS  PubMed  Google Scholar 

  163. Kim EJ, Park HS, Yoon HS, Cho S. A case of perforating dermatofibroma with floret-like giant cells. Clin Exp Dermatol. 2015;40(3):305–8. doi:10.1111/ced.12539.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol. 2002;76(11):5654–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Schoolmeester JK, Smyrk TC. Multinucleated epithelial giant cells in the duodenum. Int J Surg Pathol. 2013;21(2):202–4. doi:10.1177/1066896912452911.

    Article  PubMed  Google Scholar 

  166. Cohen PR, Paravar T, Lee RA. Epidermal multinucleated giant cells are not always a histopathologic clue to a herpes virus infection: multinucleated epithelial giant cells in the epidermis of lesional skin biopsies from patients with acantholytic dermatoses can histologically mimic a herpes virus infection. Dermatol Pract Concept. 2014;4(4):21–7. doi:10.5826/dpc.0404a03.

    PubMed Central  PubMed  Google Scholar 

  167. Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122(13):2162–6. doi:10.1182/blood-2013-05-468223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Holt DJ, Grainger DW. Multinucleated giant cells from fibroblast cultures. Biomaterials. 2011;32(16):3977–87. doi:10.1016/j.biomaterials.2011.02.021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Devaney K, Goodman ZD, Ishak KG. Postinfantile giant-cell transformation in hepatitis. Hepatology. 1992;16(2):327–33.

    Article  CAS  PubMed  Google Scholar 

  170. Gabor L, Pal K, Zsuzsa S. Giant cell hepatitis in adults. Pathol Oncol Res. 1997;3(3):215–18. doi:10.1007/BF02899924.

    Article  CAS  PubMed  Google Scholar 

  171. Cohen LM. The starburst giant cell is useful for distinguishing lentigo maligna from photodamaged skin. J Am Acad Dermatol. 1996;35(6):962–8.

    Article  CAS  PubMed  Google Scholar 

  172. Patino WD, Hutchens KA, Kapil J, Chiou Y, Gottlieb GJ. Eosinophilic cytoplasmic inclusion bodies in vesicular multinucleated melanocytes: a clue to the diagnosis of benign melanocytic lesions. Am J Dermatopathol. 2012;34(4):424–7. doi:10.1097/DAD.0b013e318216a822.

    Article  PubMed  Google Scholar 

  173. Kuppers R, Hansmann ML. The Hodgkin and Reed/Sternberg cell. Int J Biochem Cell Biol. 2005;37(3):511–17. doi:10.1016/j.biocel.2003.10.025.

    Article  PubMed  CAS  Google Scholar 

  174. Rengstl B, Rieger MA, Newrzela S. On the origin of giant cells in Hodgkin lymphoma. Commun Integr Biol. 2014;7:e28602. doi:10.4161/cib.28602.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Kamel OW, LeBrun DP, Berry GJ, Dorfman RF, Warnke RA. Warthin-Finkeldey polykaryocytes demonstrate a T-cell immunophenotype. Am J Clin Pathol. 1992;97(2):179–83.

    CAS  PubMed  Google Scholar 

  176. Orenstein JM. The Warthin-Finkeldey-type giant cell in HIV infection, what is it? Ultrastruct Pathol. 1998;22(4):293–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Migliaccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Trout, K.L., Jessop, F., Migliaccio, C.T. (2016). Macrophage and Multinucleated Giant Cell Classification. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics