Skip to main content

Clinical Applications

  • Chapter
  • First Online:
Clinical Applications of Magnetoencephalography
  • 790 Accesses

Abstract

Magnetoencephalography is sensitive primarily to current sources tangential to the skull. Therefore, currents generated in area 3b of primly somatosensory cortex (S1) and area 4 of primary motor cortex located on the posterior and anterior banks of the central sulcus, respectively, are easily detected. The SEFs generated by peripheral mixed nerve stimulation (e.g., median nerve) have been widely used to investigate the physiology of normal somatosensory cortical processing. In this chapter, we describe various SEF components elicited by median nerve simulation and their modulation by stimulus intensity and frequency, interfering stimulation, movement, age, medication, and disease. In addition, we describe the characteristics of SEFs generated by stimulation of various nerves and body parts and of those generated by different stimulus modalities, for example, stimulation by transcutaneous electrical currents, pneumatics, brushes, pins driven by piezoelectric actuators, lasers, intraepidermal electrical currents, intramuscular motor point, and passive movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hari R, Forss N. Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1145–54. doi:10.1098/rstb.1999.0470.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A. The somatosensory evoked magnetic fields. Prog Neurobiol. 2000;61(5):495–523.

    Article  PubMed  CAS  Google Scholar 

  3. Hari R, Kaukoranta E. Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol. 1985;24(3):233–56.

    Article  PubMed  CAS  Google Scholar 

  4. Nagamine T, Makela J, Mima T, Mikuni N, Nishitani N, Satoh T, Ikeda A, Shibasaki H. Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields. Brain Res. 1998;791(1–2):200–8.

    Article  PubMed  CAS  Google Scholar 

  5. Huttunen J, Hari R, Leinonen L. Cerebral magnetic responses to stimulation of ulnar and median nerves. Electroencephalogr Clin Neurophysiol. 1987;66(4):391–400.

    Article  PubMed  CAS  Google Scholar 

  6. Kakigi R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res. 1994;20(2):165–74.

    Article  PubMed  CAS  Google Scholar 

  7. Forss N, Hari R, Salmelin R, Ahonen A, Hamalainen M, Kajola M, Knuutila J, Simola J. Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res. 1994;99(2):309–15.

    Article  PubMed  CAS  Google Scholar 

  8. Forss N, Merlet I, Vanni S, Hamalainen M, Mauguiere F, Hari R. Activation of human mesial cortex during somatosensory target detection task. Brain Res. 1996;734(1–2):229–35.

    Article  PubMed  CAS  Google Scholar 

  9. Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R. Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol. 1997;104(4):281–9.

    Article  PubMed  CAS  Google Scholar 

  10. Huang MX, Aine C, Davis L, Butman J, Christner R, Weisend M, Stephen J, Meyer J, Silveri J, Herman M, Lee RR. Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using multistart spatio-temporal localization. Hum Brain Mapp. 2000;11(2):59–76.

    Article  PubMed  CAS  Google Scholar 

  11. Tiihonen J, Hari R, Hamalainen M. Early deflections of cerebral magnetic responses to median nerve stimulation. Electroencephalogr Clin Neurophysiol. 1989;74(4):290–6.

    Article  PubMed  CAS  Google Scholar 

  12. Wikstrom H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ. Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol. 1996;100(6):479–87.

    Article  PubMed  CAS  Google Scholar 

  13. Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T. Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol. 1996;100(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  14. Huttunen J, Komssi S, Lauronen L. Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: an MEG study. Neuroimage. 2006;32(3):1024–31. doi:10.1016/j.neuroimage.2006.04.196.

    Article  PubMed  Google Scholar 

  15. Sugawara K, Onishi H, Yamashiro K, Kojima S, Miyaguchi S, Kirimoto H, Tsubaki A, Tamaki H, Shirozu H, Kameyama S. The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clin Neurophysiol. 2014. doi:10.1016/j.clinph.2014.04.014.

    PubMed  Google Scholar 

  16. Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT, Lee LS. Differential generators for N20m and P35m responses to median nerve stimulation. Neuroimage. 2005;25(4):1090–9. doi:10.1016/j.neuroimage.2004.12.047.

    Article  PubMed  CAS  Google Scholar 

  17. Hoshiyama M, Kakigi R, Koyama S, Watanabe S, Shimojo M. Activity in posterior parietal cortex following somatosensory stimulation in man: magnetoencephalographic study using spatio-temporal source analysis. Brain Topogr. 1997;10(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  18. Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R. Serial processing in the human somatosensory system. Cereb Cortex. 2004;14(8):851–7. doi:10.1093/cercor/bhh043.

    Article  PubMed  Google Scholar 

  19. Jousmaki V, Forss N. Effects of stimulus intensity on signals from human somatosensory cortices. Neuroreport. 1998;9(15):3427–31.

    Article  PubMed  CAS  Google Scholar 

  20. Torquati K, Pizzella V, Della Penna S, Franciotti R, Babiloni C, Rossini PM, Romani GL. Comparison between SI and SII responses as a function of stimulus intensity. Neuroreport. 2002;13(6):813–9.

    Article  PubMed  Google Scholar 

  21. Hoshiyama M, Kakigi R. Two evoked responses with different recovery functions in the primary somatosensory cortex in humans. Clin Neurophysiol. 2001;112(7):1334–42.

    Article  PubMed  CAS  Google Scholar 

  22. Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation. Brain Res. 2013;1535:78–88. doi:10.1016/j.brainres.2013.08.048.

    Article  PubMed  CAS  Google Scholar 

  23. Tsutada T, Tsuyuguchi N, Hattori H, Shimada H, Shimogawara M, Kuramoto T, Haruta Y, Matsuoka Y, Hakuba A. Determining the appropriate stimulus intensity for studying the dipole moment in somatosensory evoked fields: a preliminary study. Clin Neurophysiol. 1999;110(12):2127–30.

    Article  PubMed  CAS  Google Scholar 

  24. Lin YY, Shih YH, Chen JT, Hsieh JC, Yeh TC, Liao KK, Kao CD, Lin KP, Wu ZA, Ho LT. Differential effects of stimulus intensity on peripheral and neuromagnetic cortical responses to median nerve stimulation. Neuroimage. 2003;20(2):909–17. doi:10.1016/S1053-8119(03)00387-2.

    Article  PubMed  Google Scholar 

  25. Karhu J, Hari R, Paetau R, Kajola M, Mervaala E. Cortical reactivity in progressive myoclonus epilepsy. Electroencephalogr Clin Neurophysiol. 1994;90(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  26. Hamada Y, Otsuka S, Okamoto T, Suzuki R. The profile of the recovery cycle in human primary and secondary somatosensory cortex: a magnetoencephalography study. Clin Neurophysiol. 2002;113(11):1787–93.

    Article  PubMed  Google Scholar 

  27. Huttunen J. In search of augmentation at human SI: somatosensory cortical responses to stimulus trains and their modulation by motor activity. Brain Res. 2010;1331:74–9. doi:10.1016/j.brainres.2010.03.058.

    Article  PubMed  CAS  Google Scholar 

  28. Lim M, Kim JS, Chung CK. Modulation of somatosensory evoked magnetic fields by intensity of interfering stimuli in human somatosensory cortex: an MEG study. Neuroimage. 2012;61(3):660–9. doi:10.1016/j.neuroimage.2012.04.003.

    Article  PubMed  Google Scholar 

  29. Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y. Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci. 1995;128(2):195–204.

    Article  PubMed  CAS  Google Scholar 

  30. Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R. Differential modulation in human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci. 2005;22(5):1239–47. doi:10.1111/j.1460-9568.2005.04289.x.

    Article  PubMed  Google Scholar 

  31. Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage. 2006;32(3):1355–64. doi:10.1016/j.neuroimage.2006.05.015.

    Article  PubMed  Google Scholar 

  32. Huttunen J, Lauronen L. Intracortical modulation of somatosensory evoked fields during movement: evidence for selective suppression of postsynaptic inhibition. Brain Res. 2012;1459:43–51. doi:10.1016/j.brainres.2012.04.023.

    Article  PubMed  CAS  Google Scholar 

  33. Hashimoto I, Kimura T, Fukushima T, Iguchi Y, Saito Y, Terasaki O, Sakuma K. Reciprocal modulation of somatosensory evoked N20m primary response and high-frequency oscillations by interference stimulation. Clin Neurophysiol. 1999;110(8):1445–51.

    Article  PubMed  CAS  Google Scholar 

  34. Tanosaki M, Suzuki A, Takino R, Kimura T, Iguchi Y, Kurobe Y, Haruta Y, Hoshi Y, Hashimoto I. Neural mechanisms for generation of tactile interference effects on somatosensory evoked magnetic fields in humans. Clin Neurophysiol. 2002;113(5):672–80.

    Article  PubMed  Google Scholar 

  35. Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S, Nakamura A. Effects of tactile interference stimulation on somatosensory evoked magnetic fields. Neuroreport. 1996;7(2):405–8.

    Article  PubMed  CAS  Google Scholar 

  36. Huttunen J, Wikstrom H, Salonen O, Ilmoniemi RJ. Human somatosensory cortical activation strengths: comparison between males and females and age-related changes. Brain Res. 1999;818(2):196–203.

    Article  PubMed  CAS  Google Scholar 

  37. Hagiwara K, Ogata K, Okamoto T, Uehara T, Hironaga N, Shigeto H, Kira J, Tobimatsu S. Age-related changes across the primary and secondary somatosensory areas: an analysis of neuromagnetic oscillatory activities. Clin Neurophysiol. 2014;125(5):1021–9. doi:10.1016/j.clinph.2013.10.005.

    Article  PubMed  Google Scholar 

  38. Zappasodi F, Pasqualetti P, Tombini M, Ercolani M, Pizzella V, Rossini PM, Tecchio F. Hand cortical representation at rest and during activation: gender and age effects in the two hemispheres. Clin Neurophysiol. 2006;117(7):1518–28. doi:10.1016/j.clinph.2006.03.016.

    Article  PubMed  Google Scholar 

  39. Stephen JM, Ranken D, Best E, Adair J, Knoefel J, Kovacevic S, Padilla D, Hart B, Aine CJ. Aging changes and gender differences in response to median nerve stimulation measured with MEG. Clin Neurophysiol. 2006;117(1):131–43. doi:10.1016/j.clinph.2005.09.003.

    Article  PubMed  Google Scholar 

  40. Haueisen J, Heuer T, Nowak H, Liepert J, Weiller C, Okada Y, Curio G. The influence of lorazepam on somatosensory-evoked fast frequency (600 Hz) activity in MEG. Brain Res. 2000;874(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  41. Huttunen J, Pekkonen E, Kivisaari R, Autti T, Kahkonen S. Modulation of somatosensory evoked fields from SI and SII by acute GABA A-agonism and paired-pulse stimulation. Neuroimage. 2008;40(2):427–34. doi:10.1016/j.neuroimage.2007.12.024.

    Article  PubMed  Google Scholar 

  42. Huttunen J, Kahkonen S, Kaakkola S, Ahveninen J, Pekkonen E. Effects of an acute D2-dopaminergic blockade on the somatosensory cortical responses in healthy humans: evidence from evoked magnetic fields. Neuroreport. 2003;14(12):1609–12. doi:10.1097/01.wnr.0000085689.46774.53.

    Article  PubMed  CAS  Google Scholar 

  43. Huttunen J, Jaaskelainen IP, Hirvonen J, Kaakkola S, Ilmoniemi RJ, Pekkonen E. Scopolamine reduces the P35m and P60m deflections of the human somatosensory evoked magnetic fields. Neuroreport. 2001;12(3):619–23.

    Article  PubMed  CAS  Google Scholar 

  44. Wikstrom H, Roine RO, Aronen HJ, Salonen O, Sinkkonen J, Ilmoniemi RJ, Huttunen J. Specific changes in somatosensory evoked magnetic fields during recovery from sensorimotor stroke. Ann Neurol. 2000;47(3):353–60.

    Article  PubMed  CAS  Google Scholar 

  45. Wikstrom H, Roine RO, Salonen O, Lund KB, Salli E, Ilmoniemi RJ, Aronen HJ, Huttunen J. Somatosensory evoked magnetic fields from the primary somatosensory cortex (SI) in acute stroke. Clin Neurophysiol. 1999;110(5):916–23.

    Article  PubMed  CAS  Google Scholar 

  46. Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ, Neundorfer B, Stefan H. Post-apoplectic reorganization of cortical areas processing passive movement and tactile stimulation – a neuromagnetic case study. Neuroreport. 2002;13(18):2581–6. doi:10.1097/01.wnr.0000048922.00321.ee.

    Article  PubMed  Google Scholar 

  47. Gallien P, Aghulon C, Durufle A, Petrilli S, de Crouy AC, Carsin M, Toulouse P. Magnetoencephalography in stroke: a 1-year follow-up study. Eur J Neurol. 2003;10(4):373–82.

    Article  PubMed  CAS  Google Scholar 

  48. Oliviero A, Tecchio F, Zappasodi F, Pasqualetti P, Salustri C, Lupoi D, Ercolani M, Romani GL, Rossini PM. Brain sensorimotor hand area functionality in acute stroke: insights from magnetoencephalography. Neuroimage. 2004;23(2):542–50. doi:10.1016/j.neuroimage.2004.06.040.

    Article  PubMed  Google Scholar 

  49. Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM. Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage. 2006;32(3):1326–34. doi:10.1016/j.neuroimage.2006.05.004.

    Article  PubMed  Google Scholar 

  50. Tecchio F, Pasqualetti P, Zappasodi F, Tombini M, Lupoi D, Vernieri F, Rossini PM. Outcome prediction in acute monohemispheric stroke via magnetoencephalography. J Neurol. 2007;254(3):296–305. doi:10.1007/s00415-006-0355-0.

    Article  PubMed  Google Scholar 

  51. Tecchio F, Zappasodi F, Tombini M, Caulo M, Vernieri F, Rossini PM. Interhemispheric asymmetry of primary hand representation and recovery after stroke: a MEG study. Neuroimage. 2007;36(4):1057–64. doi:10.1016/j.neuroimage.2007.02.058.

    Article  PubMed  CAS  Google Scholar 

  52. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P. Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage. 2001;14(2):474–85. doi:10.1006/nimg.2000.0686.

    Article  PubMed  CAS  Google Scholar 

  53. Tecchio F, Pasqualetti P, Pizzella V, Romani G, Rossini PM. Morphology of somatosensory evoked fields: inter-hemispheric similarity as a parameter for physiological and pathological neural connectivity. Neurosci Lett. 2000;287(3):203–6.

    Article  PubMed  CAS  Google Scholar 

  54. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P, Romani GL, Orlacchio A. On the reorganization of sensory hand areas after mono-hemispheric lesion: a functional (MEG)/anatomical (MRI) integrative study. Brain Res. 1998;782(1–2):153–66.

    Article  PubMed  CAS  Google Scholar 

  55. Tecchio F, Rossini PM, Pizzella V, Cassetta E, Pasqualetti P, Romani GL. A neuromagnetic normative data set for hemispheric sensory hand cortical representations and their interhemispheric differences. Brain Res Brain Res Protoc. 1998;2(4):306–14.

    Article  PubMed  CAS  Google Scholar 

  56. Tecchio F, Rossini PM, Pizzella V, Cassetta E, Romani GL. Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res. 1997;767(1):100–8.

    Article  PubMed  CAS  Google Scholar 

  57. Vanni S, Rockstroh B, Hari R. Cortical sources of human short-latency somatosensory evoked fields to median and ulnar nerve stimuli. Brain Res. 1996;737(1–2):25–33.

    Article  PubMed  CAS  Google Scholar 

  58. Huttunen J, Kaukoranta E, Hari R. Cerebral magnetic responses to stimulation of tibial and sural nerves. J Neurol Sci. 1987;79(1–2):43–54.

    Article  PubMed  CAS  Google Scholar 

  59. Kakigi R, Koyama S, Hoshiyama M, Shimojo M, Kitamura Y, Watanabe S. Topography of somatosensory evoked magnetic fields following posterior tibial nerve stimulation. Electroencephalogr Clin Neurophysiol. 1995;95(2):127–34.

    Article  PubMed  CAS  Google Scholar 

  60. Nakagawa H, Namima T, Aizawa M, Uchi K, Kaiho Y, Yoshikawa K, Orikasa S, Nakasato N. Somatosensory evoked magnetic fields elicited by dorsal penile, posterior tibial and median nerve stimulation. Electroencephalogr Clin Neurophysiol. 1998;108(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  61. Shimojo M, Kakigi R, Hoshiyama M, Koyama S, Kitamura Y, Watanabe S. Differentiation of receptive fields in the sensory cortex following stimulation of various nerves of the lower limb in humans: a magnetoencephalographic study. J Neurosurg. 1996;85(2):255–62. doi:10.3171/jns.1996.85.2.0255.

    Article  PubMed  CAS  Google Scholar 

  62. Narici L, Modena I, Opsomer RJ, Pizzella V, Romani GL, Torrioli G, Traversa R, Rossini PM. Neuromagnetic somatosensory homunculus: a non-invasive approach in humans. Neurosci Lett. 1991;121(1–2):51–4.

    Article  PubMed  CAS  Google Scholar 

  63. Kaukoranta E, Hari R, Hamalainen M, Huttunen J. Cerebral magnetic fields evoked by peroneal nerve stimulation. Somatosens Res. 1986;3(4):309–21.

    Article  PubMed  CAS  Google Scholar 

  64. Hari R, Karhu J, Hamalainen M, Knuutila J, Salonen O, Sams M, Vilkman V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci. 1993;5(6):724–34.

    Article  PubMed  CAS  Google Scholar 

  65. Karhu J, Hari R, Lu ST, Paetau R, Rif J. Cerebral magnetic fields to lingual stimulation. Electroencephalogr Clin Neurophysiol. 1991;80(6):459–68.

    Article  PubMed  CAS  Google Scholar 

  66. Maezawa H, Yoshida K, Matsuhashi M, Yokoyama Y, Mima T, Bessho K, Fujita S, Nagamine T, Fukuyama H. Evaluation of tongue sensory disturbance by somatosensory evoked magnetic fields following tongue stimulation. Neurosci Res. 2011;71(3):244–50. doi:10.1016/j.neures.2011.07.1831.

    Article  PubMed  Google Scholar 

  67. Maezawa H, Yoshida K, Nagamine T, Matsubayashi J, Enatsu R, Bessho K, Fukuyama H. Somatosensory evoked magnetic fields following electric tongue stimulation using pin electrodes. Neurosci Res. 2008;62(2):131–9. doi:10.1016/j.neures.2008.07.004.

    Article  PubMed  Google Scholar 

  68. Sakamoto K, Nakata H, Yumoto M, Kakigi R. Somatosensory processing of the tongue in humans. Front Physiol. 2010;1:136. doi:10.3389/fphys.2010.00136.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Sakamoto K, Nakata H, Inui K, Perrucci MG, Del Gratta C, Kakigi R, Romani GL. A difference exists in somatosensory processing between the anterior and posterior parts of the tongue. Neurosci Res. 2010;66(2):173–9. doi:10.1016/j.neures.2009.10.013.

    Article  PubMed  Google Scholar 

  70. Sakamoto K, Nakata H, Kakigi R. Somatotopic representation of the tongue in human secondary somatosensory cortex. Clin Neurophysiol. 2008;119(9):2125–34. doi:10.1016/j.clinph.2008.05.003.

    Article  PubMed  Google Scholar 

  71. Sakamoto K, Nakata H, Kakigi R. Somatosensory-evoked magnetic fields following stimulation of the tongue in humans. Clin Neurophysiol. 2008;119(7):1664–73. doi:10.1016/j.clinph.2008.03.029.

    Article  PubMed  Google Scholar 

  72. Maezawa H, Matsuhashi M, Yoshida K, Mima T, Nagamine T, Fukuyama H. Evaluation of lip sensory disturbance using somatosensory evoked magnetic fields. Clin Neurophysiol. 2014;125(2):363–9. doi:10.1016/j.clinph.2013.07.017.

    Article  PubMed  Google Scholar 

  73. Hoshiyama M, Kakigi R, Koyama S, Kitamura Y, Shimojo M, Watanabe S. Somatosensory evoked magnetic fields following stimulation of the lip in humans. Electroencephalogr Clin Neurophysiol. 1996;100(2):96–104.

    Article  PubMed  CAS  Google Scholar 

  74. Tamura Y, Shibukawa Y, Shintani M, Kaneko Y, Ichinohe T. Oral structure representation in human somatosensory cortex. Neuroimage. 2008;43(1):128–35. doi:10.1016/j.neuroimage.2008.06.040.

    Article  PubMed  Google Scholar 

  75. Nihashi T, Kakigi R, Hoshiyama M, Miki K, Kajita Y, Yoshida J, Yatsuya H. Effect of tactile interference stimulation of the ear in human primary somatosensory cortex: a magnetoencephalographic study. Clin Neurophysiol. 2003;114(10):1866–78.

    Article  PubMed  CAS  Google Scholar 

  76. Nihashi T, Kakigi R, Okada T, Sadato N, Kashikura K, Kajita Y, Yoshida J. Functional magnetic resonance imaging evidence for a representation of the ear in human primary somatosensory cortex: comparison with magnetoencephalography study. Neuroimage. 2002;17(3):1217–26.

    Article  PubMed  CAS  Google Scholar 

  77. Nihashi T, Kakigi R, Kawakami O, Hoshiyama M, Itomi K, Nakanishi H, Kajita Y, Inao S, Yoshida J. Representation of the ear in human primary somatosensory cortex. Neuroimage. 2001;13(2):295–304. doi:10.1006/nimg.2000.0695.

    Article  PubMed  CAS  Google Scholar 

  78. Nguyen BT, Tran TD, Hoshiyama M, Inui K, Kakigi R. Face representation in the human primary somatosensory cortex. Neurosci Res. 2004;50(2):227–32. doi:10.1016/j.neures.2004.07.004.

    Article  PubMed  Google Scholar 

  79. Nguyen BT, Inui K, Hoshiyama M, Nakata H, Kakigi R. Face representation in the human secondary somatosensory cortex. Clin Neurophysiol. 2005;116(6):1247–53. doi:10.1016/j.clinph.2005.01.018.

    Article  PubMed  Google Scholar 

  80. Nevalainen P, Ramstad R, Isotalo E, Haapanen ML, Lauronen L. Trigeminal somatosensory evoked magnetic fields to tactile stimulation. Clin Neurophysiol. 2006;117(9):2007–15. doi:10.1016/j.clinph.2006.05.019.

    Article  PubMed  CAS  Google Scholar 

  81. Itomi K, Kakigi R, Hoshiyama M, Watanabe K. A unique area of the homonculus: the topography of the primary somatosensory cortex in humans following posterior scalp and shoulder stimulation. Brain Topogr. 2001;14(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  82. Itomi K, Kakigi R, Maeda K, Hoshiyama M. Dermatome versus homunculus; detailed topography of the primary somatosensory cortex following trunk stimulation. Clin Neurophysiol. 2000;111(3):405–12.

    Article  PubMed  CAS  Google Scholar 

  83. Matsushita M, Nakasato N, Nakagawa H, Kanno A, Kaiho Y, Arai Y. Primary somatosensory evoked magnetic fields elicited by sacral surface electrical stimulation. Neurosci Lett. 2008;431(1):77–80. doi:10.1016/j.neulet.2007.11.025.

    Article  PubMed  CAS  Google Scholar 

  84. Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus. 2003;15(1):E7.

    Article  PubMed  Google Scholar 

  85. Yang TT, Gallen CC, Schwartz BJ, Bloom FE. Noninvasive somatosensory homunculus mapping in humans by using a large-array biomagnetometer. Proc Natl Acad Sci U S A. 1993;90(7):3098–102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R. Somatosensory homunculus as drawn by MEG. Neuroimage. 1998;7(4 Pt 1):377–86. doi:10.1006/nimg.1998.0332.

    Article  PubMed  CAS  Google Scholar 

  87. Makela JP, Kirveskari E, Seppa M, Hamalainen M, Forss N, Avikainen S, Salonen O, Salenius S, Kovala T, Randell T, Jaaskelainen J, Hari R. Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp. 2001;12(3):180–92.

    Article  PubMed  CAS  Google Scholar 

  88. Castillo EM, Papanicolaou AC. Cortical representation of dermatomes: MEG-derived maps after tactile stimulation. Neuroimage. 2005;25(3):727–33. doi:10.1016/j.neuroimage.2004.12.040.

    Article  PubMed  Google Scholar 

  89. Vogel P, Ruber P, Klein R. The latency difference of the tibial and sural nerve SEP: peripheral versus central factors. Electroencephalogr Clin Neurophysiol. 1986;65(4):269–75.

    Article  PubMed  CAS  Google Scholar 

  90. Huttunen J. Magnetic cortical responses evoked by tactile stimulation of the middle finger in man. Pflugers Arch. 1986;407(2):129–33.

    Article  PubMed  CAS  Google Scholar 

  91. Forss N, Salmelin R, Hari R. Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalogr Clin Neurophysiol. 1994;92(6):510–7.

    Article  PubMed  CAS  Google Scholar 

  92. Hoshiyama M, Kakigi R, Koyama S, Kitamura Y, Shimoio M, Watanabe S. Somatosensory evoked magnetic fields after mechanical stimulation of the scalp in humans. Neurosci Lett. 1995;195(1):29–32.

    Article  PubMed  CAS  Google Scholar 

  93. Mertens M, Lutkenhoner B. Efficient neuromagnetic determination of landmarks in the somatosensory cortex. Clin Neurophysiol. 2000;111(8):1478–87.

    Article  PubMed  CAS  Google Scholar 

  94. Hoechstetter K, Rupp A, Meinck HM, Weckesser D, Bornfleth H, Stippich C, Berg P, Scherg M. Magnetic source imaging of tactile input shows task-independent attention effects in SII. Neuroreport. 2000;11(11):2461–5.

    Article  PubMed  CAS  Google Scholar 

  95. Hoechstetter K, Rupp A, Stancak A, Meinck HM, Stippich C, Berg P, Scherg M. Interaction of tactile input in the human primary and secondary somatosensory cortex – a magnetoencephalographic study. Neuroimage. 2001;14(3):759–67. doi:10.1006/nimg.2001.0855.

    Article  PubMed  CAS  Google Scholar 

  96. Simoes C, Mertens M, Forss N, Jousmaki V, Lutkenhoner B, Hari R. Functional overlap of finger representations in human SI and SII cortices. J Neurophysiol. 2001;86(4):1661–5.

    PubMed  CAS  Google Scholar 

  97. Karageorgiou E, Koutlas IG, Alonso AA, Leuthold AC, Lewis SM, Georgopoulos AP. Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography. Exp Brain Res. 2008;189(3):311–21. doi:10.1007/s00221-008-1425-6.

    Article  PubMed  Google Scholar 

  98. Lin YY, Kajola M. Neuromagnetic somatosensory responses to natural moving tactile stimulation. Can J Neurol Sci. 2003;30(1):31–5.

    Article  PubMed  Google Scholar 

  99. Jousmaki V, Nishitani N, Hari R. A brush stimulator for functional brain imaging. Clin Neurophysiol. 2007;118(12):2620–4. doi:10.1016/j.clinph.2007.08.024.

    Article  PubMed  CAS  Google Scholar 

  100. Hesse MD, Nishitani N, Fink GR, Jousmaki V, Hari R. Attenuation of somatosensory responses to self-produced tactile stimulation. Cereb Cortex. 2010;20(2):425–32. doi:10.1093/cercor/bhp110.

    Article  PubMed  Google Scholar 

  101. Hadoush H, Inoue K, Nakanishi K, Kurumadani H, Sunagawa T, Ochi M. Ipsilateral primary sensorimotor cortical response to mechanical tactile stimuli. Neuroreport. 2010;21(2):108–13. doi:10.1097/WNR.0b013e3283349a17.

    Article  PubMed  Google Scholar 

  102. Onishi H, Oyama M, Soma T, Kubo M, Kirimoto H, Murakami H, Kameyama S. Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clin Neurophysiol. 2010;121(4):588–93. doi:10.1016/j.clinph.2009.12.022.

    Article  PubMed  Google Scholar 

  103. Mogilner A, Nomura M, Ribary U, Jagow R, Lado F, Rusinek H, Llinas R. Neuromagnetic studies of the lip area of primary somatosensory cortex in humans: evidence for an oscillotopic organization. Exp Brain Res. 1994;99(1):137–47.

    Article  PubMed  CAS  Google Scholar 

  104. Huttunen J, Kobal G, Kaukoranta E, Hari R. Cortical responses to painful CO2 stimulation of nasal mucosa; a magnetoencephalographic study in man. Electroencephalogr Clin Neurophysiol. 1986;64(4):347–9.

    Article  PubMed  CAS  Google Scholar 

  105. Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S. Pain-related magnetic fields following painful CO2 laser stimulation in man. Neurosci Lett. 1995;192(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  106. Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S. Pain-related brain responses following CO2 laser stimulation: magnetoencephalographic studies. Electroencephalogr Clin Neurophysiol Suppl. 1996;47:111–20.

    PubMed  CAS  Google Scholar 

  107. Bragard D, Chen AC, Plaghki L. Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett. 1996;209(2):81–4.

    Article  PubMed  CAS  Google Scholar 

  108. Watanabe S, Kakigi R, Koyama S, Hoshiyama M, Kaneoke Y. Pain processing traced by magnetoencephalography in the human brain. Brain Topogr. 1998;10(4):255–64.

    Article  PubMed  CAS  Google Scholar 

  109. Tran TD, Lam K, Hoshiyama M, Kakigi R. A new method for measuring the conduction velocities of Abeta-, Adelta- and C-fibers following electric and CO(2) laser stimulation in humans. Neurosci Lett. 2001;301(3):187–90.

    Article  PubMed  CAS  Google Scholar 

  110. Tran TD, Inui K, Hoshiyama M, Lam K, Qiu Y, Kakigi R. Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Neuroscience. 2002;113(2):375–86.

    Article  PubMed  CAS  Google Scholar 

  111. Kakigi R, Tran TD, Qiu Y, Wang X, Nguyen TB, Inui K, Watanabe S, Hoshiyama M. Cerebral responses following stimulation of unmyelinated C-fibers in humans: electro- and magneto-encephalographic study. Neurosci Res. 2003;45(3):255–75.

    Article  PubMed  Google Scholar 

  112. Qiu Y, Fu Q, Wang X, Tran TD, Inui K, Iwase S, Kakigi R. Microneurographic study of C fiber discharges induced by CO2 laser stimulation in humans. Neurosci Lett. 2003;353(1):25–8.

    Article  PubMed  CAS  Google Scholar 

  113. Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R. Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol. 2004;115(3):636–46. doi:10.1016/j.clinph.2003.10.017.

    Article  PubMed  Google Scholar 

  114. Forss N, Raij TT, Seppa M, Hari R. Common cortical network for first and second pain. Neuroimage. 2005;24(1):132–42. doi:10.1016/j.neuroimage.2004.09.032.

    Article  PubMed  Google Scholar 

  115. Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage. 2008;42(2):858–68. doi:10.1016/j.neuroimage.2008.05.017.

    Article  PubMed  Google Scholar 

  116. Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R. Conduction velocity of the spinothalamic tract following CO2 laser stimulation of C-fibers in humans. Pain. 2002;95(1–2):125–31.

    Article  PubMed  Google Scholar 

  117. Inui K, Tran TD, Hoshiyama M, Kakigi R. Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain. 2002;96(3):247–52.

    Article  PubMed  Google Scholar 

  118. Inui K, Tran TD, Qiu Y, Wang X, Hoshiyama M, Kakigi R. Pain-related magnetic fields evoked by intra-epidermal electrical stimulation in humans. Clin Neurophysiol. 2002;113(2):298–304.

    Article  PubMed  Google Scholar 

  119. Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R. Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci. 2003;18(10):2859–66.

    Article  PubMed  Google Scholar 

  120. Inui K, Tran TD, Qiu Y, Wang X, Hoshiyama M, Kakigi R. A comparative magnetoencephalographic study of cortical activations evoked by noxious and innocuous somatosensory stimulations. Neuroscience. 2003;120(1):235–48.

    Article  PubMed  CAS  Google Scholar 

  121. Wang X, Inui K, Qiu Y, Kakigi R. Cortical responses to noxious stimuli during sleep. Neuroscience. 2004;128(1):177–86. doi:10.1016/j.neuroscience.2004.06.036.

    Article  PubMed  CAS  Google Scholar 

  122. Kakigi R, Inui K, Tran DT, Qiu Y, Wang X, Watanabe S, Hoshiyama M. Human brain processing and central mechanisms of pain as observed by electro- and magneto-encephalography. J Chin Med Assoc. 2004;67(8):377–86.

    PubMed  Google Scholar 

  123. Kimura T, Nishijo K, Hashimoto I. Somatosensory evoked potentials elicited by motor point stimulation. Electroencephalogr Clin Neurophysiol Suppl. 1999;49:73–6.

    PubMed  CAS  Google Scholar 

  124. Onishi H, Oyama M, Soma T, Kirimoto H, Sugawara K, Murakami H, Kameyama S. Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study. Clin Neurophysiol. 2011;122(3):605–10. doi:10.1016/j.clinph.2010.07.027.

    Article  PubMed  Google Scholar 

  125. Cheyne D, Weinberg H. Neuromagnetic fields accompanying unilateral finger movements: pre-movement and movement-evoked fields. Exp Brain Res. 1989;78(3):604–12.

    Article  PubMed  CAS  Google Scholar 

  126. Cheyne D, Kristeva R, Deecke L. Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett. 1991;122(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  127. Kristeva R, Cheyne D, Deecke L. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol. 1991;81(4):284–98.

    Article  PubMed  CAS  Google Scholar 

  128. Kristeva-Feige R, Walter H, Lutkenhoner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D. A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J Neurosci. 1994;6(4):632–9.

    Article  PubMed  CAS  Google Scholar 

  129. Kristeva-Feige R, Rossi S, Pizzella V, Tecchio F, Romani GL, Erne S, Edrich J, Orlacchio A, Rossini PM. Neuromagnetic fields of the brain evoked by voluntary movement and electrical stimulation of the index finger. Brain Res. 1995;682(1–2):22–8.

    Article  PubMed  CAS  Google Scholar 

  130. Kristeva-Feige R, Rossi S, Pizzella V, Sabato A, Tecchio F, Feige B, Romani GL, Edrich J, Rossini PM. Changes in movement-related brain activity during transient deafferentation: a neuromagnetic study. Brain Res. 1996;714(1–2):201–8.

    Article  PubMed  CAS  Google Scholar 

  131. Kristeva-Feige R, Rossi S, Feige B, Mergner T, Lucking CH, Rossini PM. The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography (MEG). Brain Res Brain Res Protoc. 1997;1(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  132. Cheyne D, Endo H, Takeda T, Weinberg H. Sensory feedback contributes to early movement-evoked fields during voluntary finger movements in humans. Brain Res. 1997;771(2):196–202.

    Article  PubMed  CAS  Google Scholar 

  133. Nagamine T, Toro C, Balish M, Deuschl G, Wang B, Sato S, Shibasaki H, Hallett M. Cortical magnetic and electric fields associated with voluntary finger movements. Brain Topogr. 1994;6(3):175–83.

    Article  PubMed  CAS  Google Scholar 

  134. Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A. Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res. 1997;115(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  135. Woldag H, Waldmann G, Schubert M, Oertel U, Maess B, Friederici A, Hummelsheim H. Cortical neuromagnetic fields evoked by voluntary and passive hand movements in healthy adults. J Clin Neurophysiol. 2003;20(2):94–101.

    Article  PubMed  Google Scholar 

  136. Oishi M, Kameyama S, Fukuda M, Tsuchiya K, Kondo T. Cortical activation in area 3b related to finger movement: an MEG study. Neuroreport. 2004;15(1):57–62.

    Article  PubMed  Google Scholar 

  137. Onishi H, Soma T, Kameyama S, Oishi M, Fuijmoto A, Oyama M, Furusawa AA, Kurokawa Y. Cortical neuromagnetic activation accompanying two types of voluntary finger extension. Brain Res. 2006;1123(1):112–8. doi:10.1016/j.brainres.2006.09.033.

    Article  PubMed  CAS  Google Scholar 

  138. Xiang J, Hoshiyama M, Koyama S, Kaneoke Y, Suzuki H, Watanabe S, Naka D, Kakigi R. Somatosensory evoked magnetic fields following passive finger movement. Brain Res Cogn Brain Res. 1997;6(2):73–82.

    Article  PubMed  CAS  Google Scholar 

  139. Lange R, Nowak H, Haueisen J, Weiller C. Passive finger movement evoked fields in magnetoencephalography. Exp Brain Res. 2001;136(2):194–9.

    Article  PubMed  CAS  Google Scholar 

  140. Alary F, Simoes C, Jousmaki V, Forss N, Hari R. Cortical activation associated with passive movements of the human index finger: an MEG study. Neuroimage. 2002;15(3):691–6. doi:10.1006/nimg.2001.1010.

    Article  PubMed  CAS  Google Scholar 

  141. Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ, Neundorfer B, Stefan H. Somatosensory evoked magnetic fields following passive movement compared with tactile stimulation of the index finger. Exp Brain Res. 2003;148(2):186–95. doi:10.1007/s00221-002-1293-4.

    PubMed  CAS  Google Scholar 

  142. Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Neuromagnetic activation following active and passive finger movements. Brain Behav. 2013;3(2):178–92. doi:10.1002/brb3.126.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Alary F, Doyon B, Loubinoux I, Carel C, Boulanouar K, Ranjeva JP, Celsis P, Chollet F. Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI. Neuroimage. 1998;8(4):377–90. doi:10.1006/nimg.1998.0377.

    Article  PubMed  CAS  Google Scholar 

  144. Albanese MC, Duerden EG, Bohotin V, Rainville P, Duncan GH. Differential effects of cognitive demand on human cortical activation associated with vibrotactile stimulation. J Neurophysiol. 2009;102(3):1623–31. doi:10.1152/jn.91295.2008.

    Article  PubMed  Google Scholar 

  145. Mima T, Terada K, Maekawa M, Nagamine T, Ikeda A, Shibasaki H. Somatosensory evoked potentials following proprioceptive stimulation of finger in man. Exp Brain Res. 1996;111(2):233–45.

    Article  PubMed  CAS  Google Scholar 

  146. Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H. Brain structures related to active and passive finger movements in man. Brain. 1999;122(Pt 10):1989–97.

    Article  PubMed  Google Scholar 

  147. Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H. Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res. 2002;143(3):276–85. doi:10.1007/s00221-001-0994-4.

    Article  PubMed  Google Scholar 

  148. Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF. Brain representation of active and passive movements. Neuroimage. 1996;4(2):105–10. doi:10.1006/nimg.1996.0034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Onishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Onishi, H., Kameyama, S. (2016). Clinical Applications. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics