Skip to main content

Oscillation and Cross-Frequency Coupling

  • Chapter
  • First Online:
Clinical Applications of Magnetoencephalography
  • 842 Accesses

Abstract

Cerebral oscillation is a neurophysiological phenomenon related to cerebral rhythmic activity that reflects neural activity. It changes depending on oscillatory frequency, reflecting various brain functions including sensory, motor, and language functions. These oscillatory changes are used as decoding features of brain-machine interfaces. Recently, it has become clear that these oscillations in the different frequency bands are synchronized with each other. This phenomenon is called cross-frequency coupling. We propose a hypothetical model: brain networks have a low-frequency oscillatory property and high γ activity in local circuits that are modulated by cross-frequency coupling between the phase of the low-frequency oscillation of the brain network and the amplitude of the high γ activity of local circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol. 1977;2:817–26.

    Article  Google Scholar 

  2. Pfurtscheller G. Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol. 1992;83:62–9.

    Article  CAS  PubMed  Google Scholar 

  3. Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121(Pt 12):2271–99.

    Article  PubMed  Google Scholar 

  4. Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 1998;121(Pt 12):2301–15.

    Article  PubMed  Google Scholar 

  5. Hirata M, Kato A, Taniguchi M, Ninomiya H, Cheyne D, Robinson SE, et al. Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci Lett. 2002;318(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  6. Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9. doi:10.1016/j.neuroimage.2006.06.005.

    Article  PubMed  Google Scholar 

  7. Taniguchi M, Kato A, Fujita N, Hirata M, Tanaka H, Kihara T, et al. Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. Neuroimage. 2000;12(3):298–306. doi:10.1006/nimg.2000.0611.

    Article  CAS  PubMed  Google Scholar 

  8. Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience. 1994;60:537–50.

    Article  CAS  PubMed  Google Scholar 

  9. Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage. 2008;42(1):332–42. doi:10.1016/j.neuroimage.2008.04.178.

    Article  PubMed  Google Scholar 

  10. Yanagisawa T, Hirata M, Saitoh Y, Goto T, Kishima H, Fukuma R, et al. Real-time control of a prosthetic hand using human electrocorticography signals. J Neurosurg. 2011;114(6):1715–22. doi:10.3171/2011.1.jns101421.

    Article  PubMed  Google Scholar 

  11. Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, Goto T, et al. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol. 2012;71(3):353–61. doi:10.1002/ana.22613.

    Article  PubMed  Google Scholar 

  12. Hirata M, Goto T, Barnes G, Umekawa Y, Yanagisawa T, Kato A, et al. Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures. J Neurosurg. 2010;112(3):528–38. doi:10.3171/2009.7.JNS09239.

    Article  PubMed  Google Scholar 

  13. Hirata M, Kato A, Taniguchi M, Saitoh Y, Ninomiya H, Ihara A, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage. 2004;23(1):46–53. doi:10.1016/j.neuroimage.2004.05.009.

    Article  PubMed  Google Scholar 

  14. Goto T, Hirata M, Umekawa Y, Yanagisawa T, Shayne M, Saitoh Y et al. Frequency-dependent spatiotemporal distribution of cerebral oscillatory changes during silent reading: a magnetoencephalograhic group analysis. Neuroimage. 2011;54(1):560–7. doi:S1053-8119(10)01105-5 [pii] 10.1016/j.neuroimage.2010.08.023 [doi].

  15. Crone NE, Hao L, Hart Jr J, Boatman D, Lesser RP, Irizarry R, et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology. 2001;57(11):2045–53.

    Article  CAS  PubMed  Google Scholar 

  16. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science (New York, NY). 2006;313(5793):1626–8. doi:10.1126/science.1128115.

    Article  CAS  Google Scholar 

  17. Yanagisawa T, Yamashita O, Hirata M, Kishima H, Saitoh Y, Goto T, et al. Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J Neurosci. 2012;32(44):15467–75. doi:10.1523/jneurosci.2929-12.2012.

    Article  CAS  PubMed  Google Scholar 

  18. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25. doi:10.1146/annurev-neuro-062111-150444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 2010;33(10):474–84. doi:10.1016/j.tins.2010.07.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hirata, M. (2016). Oscillation and Cross-Frequency Coupling. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics