Skip to main content

Schizophrenia

  • Chapter
  • First Online:
  • 814 Accesses

Abstract

Despite the high prevalence of schizophrenia, which is a devastating mental disorder, the etiology and pathophysiology of this disease are still unclear. Magnetoencephalography (MEG) has a high spatial and temporal resolution and has been used to make important contributions to schizophrenia research. In this chapter, we review MEG studies of schizophrenia, with an emphasis on event-related responses and neural oscillations. Published MEG studies suggest that patients with schizophrenia have neurophysiological deficits from the early phase of sensory processing (i.e., M50, M100, mismatch negativity) in auditory perception. Moreover, schizophrenia patients may have altered neural oscillations, and abnormalities of auditory steady-state responses to 40 Hz click stimuli are repeatedly reported. Because this research can be conducted in living schizophrenia patients, these biological results are highly valuable for understanding the etiology and pathophysiology of the disorder. As advanced medical technology becomes increasingly globally available, the clinical application of MEG to schizophrenia treatment may be imminent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bleuler E. Dementia praecox or the group of schizophrenias. New York: International University Press; 1950.

    Google Scholar 

  2. van den Broek SP, Reinders F, Donderwinkel M, Peters MJ. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106:522–34.

    Article  PubMed  Google Scholar 

  3. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage. 2006;30:813–26.

    Article  CAS  PubMed  Google Scholar 

  4. Reite M, Teale P, Rojas DC. Magnetoencephalography: applications in psychiatry. Biol Psychiatry. 1999;45:1553–63.

    Google Scholar 

  5. Otten LJ, Rugg MD. Interpreting event-related brain potentials. In: Handy TC, editor. Event-related potentials: a methods handbook. Cambridge: The MIT Press; 2005. p. 3–16.

    Google Scholar 

  6. Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry. 1982;17:639–54.

    CAS  PubMed  Google Scholar 

  7. Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD. Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug-free patients. Biol Psychiatry. 1983;18:537–51.

    CAS  PubMed  Google Scholar 

  8. Bickford-Wimer PC, Nagamoto H, Johnson R, Adler LE, Egan M, Rose GM, et al. Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry. 1990;27:183–92.

    Article  CAS  PubMed  Google Scholar 

  9. Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res. 2004;70:315–29.

    Article  PubMed  Google Scholar 

  10. Reite M, Teale P, Zimmerman J, Davis K, Whalen J. Source location of a 50 msec latency auditory evoked field component. Electroencephalogr Clin Neurophysiol. 1988;70:490–8.

    Article  CAS  PubMed  Google Scholar 

  11. Thoma RJ, Hanlon FM, Moses SN. Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. Am J Psychiatry. 2003;160:1595–605.

    Google Scholar 

  12. Edgar JC, Miller GA, Moses SN, Thoma RJ, Huang MX, Hanlon FM, et al. Cross-modal generality of the gating deficit. Psychophysiology. 2005;42:318–27.

    Article  PubMed  Google Scholar 

  13. Hirano Y, Hirano S, Maekawa T, Obayashi C, Oribe N, Monji A, et al. Auditory gating deficit to human voices in schizophrenia: a MEG study. Schizophr Res. 2010;117:61–7. doi:10.1016/j.schres.2009.09.003.

    Article  PubMed  Google Scholar 

  14. Lu BY, Edgar JC, Jones AP, Smith AK, Huang MX, Miller GA, et al. Improved test–retest reliability of 50‐ms paired‐click auditory gating using magnetoencephalography source modeling. Psychophysiology. 2007;44:86–90.

    Article  PubMed  Google Scholar 

  15. Thoma RJ, Hanlon FM, Sanchez N, Weisend MP, Huang M, Jones A, et al. Auditory sensory gating deficit and cortical thickness in schizophrenia. Neurol Clin Neurophysiol. 2004;2004:1–7.

    Google Scholar 

  16. Mathiak K, Ackermann H, Rapp A, Mathiak KA, Shergill S, Riecker A, et al. Neuromagnetic oscillations and hemodynamic correlates of P50 suppression in schizophrenia. Psychiatry Res. 2011;194:95–104. doi:10.1016/j.pscychresns.2011.01.001.

    Article  PubMed  Google Scholar 

  17. Potter D, Summerfelt A, Gold J, Buchanan RW. Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull. 2006;32:692–700.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hari R, Kaila K, Katila T, Tuomisto T, Varpula T. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol. 1982;54:561–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hajek M, Boehle C, Huonker R, Volz HP, Nowak H, Schrott PR, et al. Abnormalities of auditory evoked magnetic fields in the right hemisphere of schizophrenic females. Schizophr Res. 1997;24:329–32.

    Article  CAS  PubMed  Google Scholar 

  20. Hajek M, Huonker R, Boehle C, Volz HP, Nowak H, Sauer H. Abnormalities of auditory evoked magnetic fields and structural changes in the left hemisphere of male schizophrenics – a magnetoencephalographic-magnetic resonance imaging study. Biol Psychiatry. 1997;42:609–16.

    Article  CAS  PubMed  Google Scholar 

  21. Smith AK, Edgar JC, Huang M, Lu BY, Thoma RJ, Hanlon FM, et al. Cognitive abilities and 50- and 100-msec paired-click processes in schizophrenia. Am J Psychiatry. 2010;167:1264–75. doi:10.1176/appi.ajp.2010.09071059.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ahveninen J, Jääskeläinen IP, Osipova D, Huttunen MO, Ilmoniemi RJ, Kaprio J, et al. Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biol Psychiatry. 2006;60:612–20.

    Article  PubMed  Google Scholar 

  23. Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42:313–29.

    Article  Google Scholar 

  24. Näätänen R, Kähkönen S. Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol. 2009;12:125–35. doi:10.1017/S1461145708009322.

    Article  PubMed  Google Scholar 

  25. Pekkonen E, Katila H, Ahveninen J, Karhu J, Huotilainen M, Tiihonen J. Impaired temporal lobe processing of preattentive auditory discrimination in schizophrenia. Schizophr Bull. 2002;28:467–74.

    Article  PubMed  Google Scholar 

  26. Kircher TT, Rapp A, Grodd W, Buchkremer G, Weiskopf N, Lutzenberger W, et al. Mismatch negativity responses in schizophrenia: a combined fMRI and whole-head MEG study. Am J Psychiatry. 2004;161:294–304.

    Article  PubMed  Google Scholar 

  27. Kasai K, Yamada H, Kamio S, Nakagome K, Iwanami A, Fukuda M, et al. Neuromagnetic correlates of impaired automatic categorical perception of speech sounds in schizophrenia. Schizophr Res. 2002;59:159–72.

    Article  Google Scholar 

  28. Kasai K, Yamada H, Kamio S, Nakagome K, Iwanami A, Fukuda M, et al. Do high or low doses of anxiolytics and hypnotics affect mismatch negativity in schizophrenic subjects? An EEG and MEG study. Clin Neurophysiol. 2002;113:141–50.

    Article  CAS  PubMed  Google Scholar 

  29. Yamasue H, Yamada H, Yumoto M, Kamio S, Kudo N, Uetsuki M, et al. Abnormal association between reduced magnetic mismatch field to speech sounds and smaller left planum temporale volume in schizophrenia. NeuroImage. 2004;22:720–7.

    Article  PubMed  Google Scholar 

  30. Onitsuka T, Shenton ME, Kasai K, Nestor PG, Toner SK, Kikinis R, et al. Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch Gen Psychiatry. 2003;60:349–55.

    Article  PubMed  Google Scholar 

  31. Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cogn Neurosci. 1996;8:551–65.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Onitsuka T, Niznikiewicz MA, Spencer KM, Frumin M, Kuroki N, Lucia LC, et al. Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiatry. 2006;163:455–62.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Liu J, Harris A, Kanwisher N. Stages of processing in face perception: an MEG study. Nat Neurosci. 2002;5:910–6.

    Article  CAS  PubMed  Google Scholar 

  34. Halgren E, Raij T, Marinkovic K, Jousmäki V, Hari R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex. 2000;10:69–81.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe S, Miki K, Kakigi R. Mechanisms of face perception in humans: a magneto- and electro-encephalographic study. Neuropathology. 2005;25:8–20.

    Article  PubMed  Google Scholar 

  36. Rivolta D, Castellanos NP, Stawowsky C, Helbling S, Wibral M, Grützner C, et al. Source-reconstruction of event-related fields reveals hyperfunction and hypofunction of cortical circuits in antipsychotic-näive, first-episode schizophrenia patients during mooney face processing. J Neurosci. 2014;34:5909–17. doi:10.1523/JNEUROSCI.3752-13.2014.

    Article  PubMed  Google Scholar 

  37. Huang MX, Lee RR, Gaa KM, Song T, Harrington DL, Loh C, et al. Somatosensory system deficits in schizophrenia revealed by MEG during a median-nerve oddball task. Brain Topogr. 2010;23:82–104. doi:10.1007/s10548-009-0122-5.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338:334–7.

    Article  CAS  PubMed  Google Scholar 

  39. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13. doi:10.1038/nrn2774.

    Article  CAS  PubMed  Google Scholar 

  40. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci. 1999;3:151–62.

    Article  PubMed  Google Scholar 

  41. Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989;86:1698–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:1560–3.

    Article  CAS  PubMed  Google Scholar 

  43. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci. 1998;18:4244–54.

    CAS  PubMed  Google Scholar 

  44. Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci. 2007;27:2858–65.

    Article  CAS  PubMed  Google Scholar 

  45. Hong LE, Buchanan RW, Thaker GK, Shepard PD, Summerfelt A. Beta (~16 Hz) frequency neural oscillations mediate auditory sensory gating in humans. Psychophysiology. 2008;45:197–204.

    Article  PubMed  Google Scholar 

  46. Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Lindner M, Maurer K, et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci. 2006;26:8168–75.

    Article  CAS  PubMed  Google Scholar 

  47. von Stein A, Chiang C, König P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A. 2000;97:14748–53.

    Article  Google Scholar 

  48. Thut G, Nietzel A, Brandt SA, Pascual-Leone A. α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006;26:9494–502.

    Article  CAS  PubMed  Google Scholar 

  49. Palva S, Linkenkaer-Hansen K, Näätänen R, Palva JM. Early neural correlates of conscious somatosensory perception. J Neurosci. 2005;25:5248–58.

    Article  CAS  PubMed  Google Scholar 

  50. Cunningham MO, Hunt J, Middleton S, LeBeau FEN, Gillies MJ, Gillies MG, et al. Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci. 2006;26:2767–76.

    Article  CAS  PubMed  Google Scholar 

  51. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. doi:10.1038/nature07991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Engel AK, König P, Kreiter AK, Singer W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science. 1991;252:1177–9.

    Article  CAS  PubMed  Google Scholar 

  53. Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci. 1996;16:4240–9.

    CAS  PubMed  Google Scholar 

  54. Palva S, Palva J, Shtyrov Y, Kujala T. Distinct gamma-band evoked responses to speech and non-speech sounds in humans. J Neurosci. 2002;22:RC211.

    PubMed  Google Scholar 

  55. Hirano S, Hirano Y, Maekawa T, Obayashi C, Oribe N, Kuroki T, et al. Abnormal neural oscillatory activity to speech sounds in schizophrenia: a magnetoencephalography study. J Neurosci. 2008;28:4897–903. doi:10.1523/JNEUROSCI.5031-07.2008.

    Article  CAS  PubMed  Google Scholar 

  56. Oribe N, Onitsuka T, Hirano S, Hirano Y, Maekawa T, Obayashi C, et al. Differentiation between bipolar disorder and schizophrenia revealed by neural oscillation to speech sounds: an MEG study. Bipolar Disord. 2010;12:804–12. doi:10.1111/j.1399-5618.2010.00876.x.

    Article  PubMed  Google Scholar 

  57. Reite M, Teale P, Collins D, Rojas DC. Schizoaffective disorder – a possible MEG auditory evoked field biomarker. Psychiatry Res. 2010;182:284–6. doi:10.1016/j.pscychresns.2010.02.007.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Grützner C, Wibral M, Sun L, Rivolta D, Singer W, Maurer K, et al. Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia. Front Hum Neurosci. 2013;7:88. doi:10.3389/fnhum.2013.00088.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sun L, Castellanos N, Grützner C, Koethe D, Rivolta D, Wibral M, et al. Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naïve, first episode schizophrenia. Schizophr Res. 2013;150:519–25. doi:10.1016/j.schres.2013.08.023.

    Article  PubMed  Google Scholar 

  60. Herrmann CS, Munk MHJ, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci. 2004;8:347–55.

    Article  PubMed  Google Scholar 

  61. Cañive JM, Lewine JD, Edgar JC, Davis JT, Torres F, Roberts B, et al. Magnetoencephalographic assessment of spontaneous brain activity in schizophrenia. Psychopharmacol Bull. 1996;32:741–50.

    PubMed  Google Scholar 

  62. Cañive JM, Lewine JD, Edgar JC, Davis JT, Miller GA, Torres F, et al. Spontaneous brain magnetic activity in schizophrenia patients treated with aripiprazole. Psychopharmacol Bull. 1998;34:101–5.

    PubMed  Google Scholar 

  63. Sperling W, Vieth J, Martus M, Demling J, Barocka A. Spontaneous slow and fast MEG activity in male schizophrenics treated with clozapine. Psychopharmacology (Berl). 1999;142:375–82.

    Article  CAS  Google Scholar 

  64. Sperling W, Martus P, Kober H, Bleich S, Kornhuber J. Spontaneous, slow and fast magnetoencephalographic activity in patients with schizophrenia. Schizophr Res. 2002;58:189–99.

    Article  CAS  PubMed  Google Scholar 

  65. Fehr T, Kissler J, Moratti S, Wienbruch C. Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol Psychiatry. 2001;50:108–16.

    Google Scholar 

  66. Rockstroh BS, Wienbruch C, Ray WJ, Elbert T. Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry. 2007;7:44.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, et al. Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Hum Brain Mapp. 2009;30:3254–64. doi:10.1002/hbm.20746.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Rutter L, Nadar SR, Holroyd T, Carver FW, Apud J, Weinberger DR, et al. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks. Front Comput Neurosci. 2013;7:93. doi:10.3389/fncom.2013.00093.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK. Power spectral aspects of the default mode network in schizophrenia: an MEG study. BMC Neurosci. 2014;15:104.

    Article  PubMed Central  PubMed  Google Scholar 

  70. van Lutterveld R, Hillebrand A, Diederen KMJ, Daalman K, Kahn RS, et al. Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia. PLoS One. 2012;7:e41149. doi:10.1371/journal.pone.0041149.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ropohl A, Sperling W, Elstner S, Tomandl B, Reulbach U, Kaltenhäuser M, et al. Cortical activity associated with auditory hallucinations. Neuroreport. 2004;15:523–6.

    Article  PubMed  Google Scholar 

  72. Ishii R, Shinosaki K, Ikejiri Y, Ukai S, Yamashita K, Iwase M, et al. Theta rhythm increases in left superior temporal cortex during auditory hallucinations in schizophrenia: a case report. Neuroreport. 2000;11:3283–7.

    Article  CAS  PubMed  Google Scholar 

  73. Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Amsterdam: Elsevier; 1989.

    Google Scholar 

  74. Picton TW, John MS, Dimitrijevic A, Purcell D. Human auditory steady-state responses. Int J Audiol. 2003;42:177–219.

    Article  PubMed  Google Scholar 

  75. Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry. 1999;56:1001–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013;62:101–12.

    Article  PubMed  Google Scholar 

  77. Teale P, Collins D, Maharajh K, Rojas DC, Kronberg E, Reite M. Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. NeuroImage. 2008;42:1481–9. doi:10.1016/j.neuroimage.2008.06.020.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Tsuchimoto R, Kanba S, Hirano S, Oribe N, Ueno T, Hirano Y, et al. Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res. 2011;133:99–105. doi:10.1016/j.schres.2011.07.020.

    Article  PubMed  Google Scholar 

  79. Hamm JP, Gilmore CS, Picchetti NAM, Sponheim SR, Clementz BA. Abnormalities of neuronal oscillations and temporal integration to low- and high-frequency auditory stimulation in schizophrenia. Biol Psychiatry. 2011;69:989–96. doi:10.1016/j.biopsych.2010.11.021.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Edgar JC, Chen Y-H, Lanza M, Howell B, Chow VY, Heiken K, et al. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NeuroImage Clin. 2014;4:122–9. doi:10.1016/j.nicl.2013.11.004.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Oda Y, Onitsuka T, Tsuchimoto R, Hirano S, Oribe N, Ueno T, et al. Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PLoS One. 2012;7:e39955. doi:10.1371/journal.pone.0039955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Nakao K, Nakazawa K. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model. Front Neurosci. 2014;8:168. doi:10.3389/fnins.2014.00168.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Vierling-Claassen D, Siekmeier P, Stufflebeam S, Kopell N. Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. J Neurophysiol. 2008;99:2656–71. doi:10.1152/jn.00870.2007.

    Article  PubMed Central  PubMed  Google Scholar 

  84. McFadden KL, Steinmetz SE, Carroll AM, Simon ST, Wallace A, Rojas DC. Test-retest reliability of the 40 Hz EEG auditory steady-state response. PLoS One. 2014;9:e85748. doi:10.1371/journal.pone.0085748.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi:10.1155/2011/156869.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

    Article  PubMed  Google Scholar 

  87. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MNE software for processing MEG and EEG data. NeuroImage. 2014;86:446–60. doi:10.1016/j.neuroimage.2013.10.027.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Onitsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Onitsuka, T., Hirano, S. (2016). Schizophrenia. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics