Skip to main content

Principles of Magnetoencephalography

  • Chapter
  • First Online:
Clinical Applications of Magnetoencephalography

Abstract

Magnetoencephalography (MEG) is a neuroimaging tool which obverts functional brain maps or pathognomonic signs with millisecond order, but some computational technique appears to be a black box. To relax such complex matter for general readers, we introduce the principles of MEG computation briefly. This chapter consists of three steps: first, we introduce the basic concept of MEG; next, we describe forward solution; and finally, we address inverse problem for understanding of MEG source localization concept. MEG detects varying magnetic fluxes derived from enormous amount of intracellular currents within pyramidal layer in folded cortices, and estimation of these source activities is essential to the MEG utilization. Here, we introduce typical three source localization algorithms: equivalent current dipole (ECD), minimum norm estimation, and adaptive beam former. To estimate ECDs from measured sensor signals, repeated seeking operation is undertaken so that errors between measured signals and calculated signals are minimized. Fundamental concept of minimum norm estimation has constraint subject to minimizing total currents of all nodes. Minimum variance estimation, the so-called adaptive beam former, has constraint subject to minimizing the variance of time-series current at one node. We hope that this introduction might help readers to understand the basic theory of MEG source localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernando H, da Silva L. Electrophysiological basis of MEG signals. In: Hansen PC, Kringelbach ML, Salmelin R, editors. MEG -an introduction to methods. New York: Oxford University Press; 2010. p. 1–23.

    Google Scholar 

  2. Okada Y. Toward understanding the physiological origins of neuromagnetic signals. In: Lu ZL, Kaufman L, editors. Magnetic source imaging of the human brain. New York: Psychology Press; 2008. p. 43–76.

    Google Scholar 

  3. Nurminen J, Taulu S, Nenonen J, Helle L, Simola J, Ahonen A. Improving MEG performance with additional tangential sensors. IEEE Trans Biomed Eng. 2013;60:2559–66. doi:10.1109/TBME.2013.2260541.

    Article  PubMed  Google Scholar 

  4. Sato MA, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M. Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage. 2004;23:806–26.

    Article  PubMed  Google Scholar 

  5. MNE Home – Martinos Center for Biomedical Imaging http://martinos.org/mne/stable/index.html. Accessed 7 Jan 2015.

  6. SPM – Statistical Parametric Mapping. http://www.fil.ion.ucl.ac.uk/spm/. Accessed 7 Jan 2015.

  7. Brainstorm. http://neuroimage.usc.edu/brainstorm/. Accessed 7 Jan 2015.

  8. VBMEG – Variational Bayesian Multimodal EncephaloGraphy. http://vbmeg.atr.jp/?lang=en. Accessed 7 Jan 2015.

  9. FieldTrip. http://fieldtrip.fcdonders.nl/. Accessed 7 Jan 2015.

  10. GNU Octave. https://www.gnu.org/software/octave/. Accessed 7 Jan 2015.

  11. FreeMat. http://freemat.sourceforge.net/. Accessed 7 Jan 2015.

  12. Scilab. http://www.scilab.org/. Accessed 7 Jan 2015.

  13. EEGLAB. http://sccn.ucsd.edu/eeglab/. Accessed 7 Jan 2015.

  14. Iversen JR, Makeig S. MEG/EEG data analysis using EEGLAB. In: Supek S, Aine CJ, editors. Magnetoencephalography. From signals to dynamic cortical networks. Heidelberg: Springer; 2014. p. 199–05. doi:10.1007/978-3-642-33045-2.

    Google Scholar 

  15. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987;32:11–22.

    Article  CAS  PubMed  Google Scholar 

  16. Heller L, Volegov P. Electric and magnetic fields of the brain. In: Supek S, Aine CJ, editors. Magnetoencephalography. From signals to dynamic cortical networks. Heidelberg: Springer; 2014. p. 73–105. doi:10.1007/978-3-642-33045-2.

    Google Scholar 

  17. Haueisen J, Knösche TR. Forward modeling and tissue conductivities. In: Supek S, Aine CJ, editors. Magnetoencephalography. From signals to dynamic cortical networks. Heidelberg: Springer; 2014. p. 107–27. doi:10.1007/978-3-642-33045-2.

    Google Scholar 

  18. Gençer NG, Acar CE, Tanzer IO. Forward problem solution of magnetic source imaging. In: Lu ZL, Kaufman L, editors. Magnetic source imaging of the human brain. New York: Psychology Press; 2008. p. 77–100.

    Google Scholar 

  19. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65:413–97.

    Article  Google Scholar 

  20. Baillet S. The dowser in the fields: searching for MEG sources. In: Hansen PC, Kringelbach ML, Salmelin R, editors. MEG -an introduction to methods. New York: Oxford University Press; 2010. p. 83–123.

    Chapter  Google Scholar 

  21. Uranker L. Common compact analytical formulas for computation of geometry integrals on a basic Cartesian sub-domain in boundary and volume integral methods. Eng Anal Bound Elem. 1990;7:124–9.

    Article  Google Scholar 

  22. Van’t ED, de Munck JC, Kaas AL. A fast method to derive realistic BEM models foe E/MEG source reconstruction. IEEE Trans Biomed Eng. 2001;48:1434–43.

    Article  Google Scholar 

  23. de Munck JC. A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans Biomed Eng. 1992;39:669–71.

    Google Scholar 

  24. Fuchs M, Drenckhahn R, Wischmann HA, Wagner M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng. 1998;45:980–97.

    Article  CAS  PubMed  Google Scholar 

  25. Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng. 1997;44:727–35.

    Article  CAS  PubMed  Google Scholar 

  26. Wolters CH, Grasedyck L, Hackbusch W. Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse Probl. 2004;20:1099–116.

    Article  Google Scholar 

  27. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes -the art of scientific computing. 3rd ed. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  28. Cuffin BN. A comparison moving dipole inverse solutions using EEG’s and MEG’s. IEEE Trans Biomed Eng. 1985;32:905–10.

    Article  CAS  PubMed  Google Scholar 

  29. Cuffin BN. Effects of measurement errors and noise on MEG moving dipole inverse solutions. IEEE Trans Biomed Eng. 1986;33:854–61.

    Article  CAS  PubMed  Google Scholar 

  30. Scherg M, Voncramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol. 1985;62:32–44.

    Article  CAS  PubMed  Google Scholar 

  31. Scherg M, Voncramon D. A new interpretation of the generators of BAEP waves-I-V: results of a spatio-temporal model. Electroencephalogr Clin Neurophysiol. 1985;62:290–9.

    Article  CAS  PubMed  Google Scholar 

  32. Salmelin R. Multi-dipole modeling in MEG. In: Hansen PC, Kringelbach ML, Salmelin R, editors. MEG -an introduction to methods. New York: Oxford University Press; 2010. p. 124–55.

    Chapter  Google Scholar 

  33. Scherg M, Buchner H. Somatosensory evoked potentials and magnetic fields: separation of multiple source activities. Physiol Meas. 1993;14:35–9.

    Article  Google Scholar 

  34. Jensen O, Hesse C. Estimating distributed representations of evoked responses and oscillatory brain activity. In: Hansen PC, Kringelbach ML, Salmelin R, editors. MEG -an introduction to methods. New York: Oxford University Press; 2010. p. 156–85.

    Chapter  Google Scholar 

  35. Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32:35–42.

    Article  PubMed  Google Scholar 

  36. Hämäläinen MS, Lin FH, Mosher JC. Anatomically and functionally constrained minimum-norm estimates. In: Hansen PC, Kringelbach ML, Salmelin R, editors. MEG -an introduction to methods. New York: Oxford University Press; 2010. p. 186–215.

    Chapter  Google Scholar 

  37. Wang JZ, Kaufman L. Magnetic source imaging: search for inverse solutions. In: Lu ZL, Kaufman L, editors. Magnetic source imaging of the human brain. New York: Psychology Press; 2008. p. 101–33.

    Google Scholar 

  38. Uutela K, Hämäläinen M, Somersalo E. Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage. 1999;10:173–80.

    Article  CAS  PubMed  Google Scholar 

  39. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26:55–67.

    Article  CAS  PubMed  Google Scholar 

  40. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.

    PubMed  Google Scholar 

  41. LORETA. http://www.uzh.ch/keyinst/loreta.htm. Accessed 8 Jan 2015.

  42. Sekihara K1, Sahani M, Nagarajan SS. A simple nonparametric statistical thresholding for MEG spatial-filter source reconstruction images. NeuroImage. 2005;27:368–76.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–67.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lin FH, Belliveau JW, Dale AM, Hämäläinen MS. Distributed current estimates using cortical orientation constraints. Hum Brain Mapp. 2006;27:1–13.

    Article  PubMed  Google Scholar 

  45. Molins A, Stufflebeam SM, Brown EN, Hämäläinen MS. Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. NeuroImage. 2008;42:1069–77.

    Article  CAS  PubMed  Google Scholar 

  46. van Veen BD, van Drongelen W, Yuchman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance filtering. IEEE Trans Biomed Eng. 1997;44:867–80.

    Article  PubMed  Google Scholar 

  47. Robinson SE, Vuba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N, editors. Recent advances in biomagnetism -Proceeding of the 11th international congress of biomagnetism. Tohoku University Press; 1999. p. 302–5.

    Google Scholar 

  48. Hirata M1, Kato A, Taniguchi M, Ninomiya H, Cheyne D, Robinson SE, Maruno M, Kumura E, Ishii R, Hirabuki N, Nakamura H, Yoshimine T. Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci Lett. 2002;318:73–6.

    Article  CAS  PubMed  Google Scholar 

  49. Herdman AT, Cheyne D. A practical guide for MEG and beamforming. In: Handy TC, editor. Brain signal analysis -advances in neuroelectric and neuromagnetic methods. Cambridge: Massachusetts Institute of Technology; 2009. p. 99–140.

    Chapter  Google Scholar 

  50. Hyvärinen A, Juha Karhunen J, Oja E. Independent component analysis. New York: Wiley-Interscience; 2001.

    Book  Google Scholar 

  51. Hashizume A, Kurisu K, Iida K, Arita K, Akimitsu T, Nagasaki N. Development of a freeware for analysis of neuromagnetic epileptic discharges. Hiroshima J Med Sci. 2010;59:21–5.

    PubMed  Google Scholar 

  52. hns_meg. http://meg.aalip.jp/freeware/freewareE.html. Accessed 8 Jan 2015.

  53. Tang AC, Pearlmutter BA, Malaszenko NA, Phung DB, Reeb BC. Independent components of magnetoencephalography: localization. Neural Comput. 2002;14:1827–58.

    Article  PubMed  Google Scholar 

  54. Hironaga N, Ioannides AA. Localization of individual area neuronal activity. NeuroImage. 2007;34:1519–34.

    Article  CAS  PubMed  Google Scholar 

  55. Tang AC, Pearlmutter BA. Independent components of magnetoencephalography: localization and single-trial response onset detection. In: Lu ZL, Kaufman L, editors. Magnetic source imaging of the human brain. New York: Psychology Press; 2008. p. 159–201.

    Google Scholar 

  56. Hironaga N, Hagiwara K, Ogata K, Hayamizu M, Urakawa T, Tobimatsu S. Proposal for a new MEG–MRI co-registration: a 3D laser scanner system. Clin Neurophysiol. 2014;125:2404–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hashizume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hashizume, A., Hironaga, N. (2016). Principles of Magnetoencephalography. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics