• Nobuharu L. FujiiEmail author


The skeletal muscle is the largest site for glucose metabolism in the human body. According to insulin-clamp measurements, the contribution by the skeletal muscle accounts for 70 % of the total glucose utilization rate, substantially exceeding the contribution by other organs such as the brain (~15 %) and adipose tissue (~5 %). Therefore, impaired glucose metabolism in the skeletal muscle greatly affects blood glucose control in the body. Glucose metabolism is an intracellular event. The extra- to intracellular passage of glucose is facilitated by glucose transporters (GLUTs). Glucose transporter 1 (GLUT1) and 4 (GLUT4) are expressed in the skeletal muscle. GLUT1 constitutively spans the cell membrane and takes up glucose into the skeletal cell in accordance with the glucose concentration gradient between the inside and outside of the cell. In contrast, GLUT4 is usually incorporated into small vesicles and localized in the cell and is translocated and incorporated into the cell membrane upon stimulation by insulin, which induces glucose uptake. Among multiple GLUTs, GLUT4 is the only isoform that is regulated by translocation, and its distribution is also limited to the skeletal muscle, heart, and adipose tissue. GLUT4 acts as a master regulator of glucose metabolism in response to changes in blood glucose. Several factors regulate GLUT4 expression and its translocation to, and retention in, the cell membrane. These factors include intracellular insulin signal transduction, insulin-independent glucose metabolism, and ectopic fat. A failure in any of these factors leads to the development of diabetic conditions in the body. Exercise and physical activity can coordinate these factors, acting favorably to turn the diabetic condition to a healthier state.


Skeletal muscle Insulin Contraction Intracellular signal transduction Glucose uptake 


  1. 1.
    Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, D’Alessio D (2013) Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503(7474):59–66CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ørtenblad N, Westerblad H, Nielsen J (2013) Muscle glycogen stores and fatigue. J Physiol 591(Pt 18):4405–4413CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017CrossRefPubMedGoogle Scholar
  4. 4.
    Klip A, Sun Y, Chiu TT, Foley KP (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 306(10):C879–C886CrossRefPubMedGoogle Scholar
  5. 5.
    Augustin R (2010) The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life 62(5):315–333PubMedGoogle Scholar
  6. 6.
    Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96CrossRefPubMedGoogle Scholar
  7. 7.
    Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(19):2565–2582CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shepherd PR (2005) Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol Scand 183(1):3–12CrossRefPubMedGoogle Scholar
  9. 9.
    Wu M, Falasca M, Blough ER (2011) Akt/protein kinase B in skeletal muscle physiology and pathology. J Cell Physiol 226(1):29–36CrossRefPubMedGoogle Scholar
  10. 10.
    Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731CrossRefPubMedGoogle Scholar
  11. 11.
    Bogan JS (2012) Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem 81:507–532CrossRefPubMedGoogle Scholar
  12. 12.
    Farese RV, Sajan MP, Standaert ML (2005) Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans 33(Pt 2):350–353CrossRefPubMedGoogle Scholar
  13. 13.
    Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR (2000) CAP defines a second signaling pathway required for insulin-stimulated glucose transport. Nature 407(6801):202–207CrossRefPubMedGoogle Scholar
  14. 14.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275(12):9047–9054CrossRefPubMedGoogle Scholar
  15. 15.
    Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205CrossRefPubMedGoogle Scholar
  16. 16.
    Pederson TM, Kramer DL, Rondinone CM (2001) Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50(1):24–31CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts CK, Hevener AL, Barnard RJ (2013) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3(1):1–58PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, Cantley LC, Kahn CR (2003) Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem 278(48):48453–48466CrossRefPubMedGoogle Scholar
  19. 19.
    Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333:471–490CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2005) Increased p85/55/50 expression and decreased phosphatidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54(8):2351–2359CrossRefPubMedGoogle Scholar
  21. 21.
    Mauvais-Jarvis F, Ueki K, Fruman DA, Hirshman MF, Sakamoto K, Goodyear LJ, Iannacone M, Accili D, Cantley LC, Kahn CR (2002) Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 109(1):141–149CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ueki K, Yballe CM, Brachmann SM, Vicent D, Watt JM, Kahn CR, Cantley LC (2002) Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 99(1):419–424CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A, Crackower M, Suzuki A, Mak TW, Kahn CR, Klip A, Woo M (2005) Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 25(3):1135–1145CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ (1997) Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 100(2):449–458CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK, Kahn BB, Neel BG (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27(21):7727–7734CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M (2007) Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance. Diabetes 56(2):404–413CrossRefPubMedGoogle Scholar
  27. 27.
    Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371(12):1131–1141CrossRefPubMedGoogle Scholar
  28. 28.
    Randle PJ, Garland PB, Hales CN, Newsholme EA (1962) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789Google Scholar
  29. 29.
    Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, Setou M, Fujii NL (2013) Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci Rep 3:3267CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fujii N, Jessen N, Goodyear LJ (2006) AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 291(5):E867–E877CrossRefPubMedGoogle Scholar
  31. 31.
    Martin IVAK, Katz A, Wahren J, Iva K (1995) Splanchnic and muscle metabolism during exercise in NIDDM patients. Am J Physiol Endocrinol Metab 269:583–590Google Scholar
  32. 32.
    Lund S, Holman GD, Schmitz O, Pedersen O (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 92(13):5817–5821CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee AD, Hansen PA, Holloszy JO (1995) Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 361(1):51–54CrossRefPubMedGoogle Scholar
  34. 34.
    Yeh JI, Gulve EA, Rameh L, Birnbaum MJ (1995) The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem 270(5):2107–2111CrossRefPubMedGoogle Scholar
  35. 35.
    Wojtaszewski JF, Higaki Y, Hirshman MF, Michael MD, Dufresne SD, Kahn CR, Goodyear LJ (1999) Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest 104(9):1257–1264CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hardie DG (2013) AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62(7):2164–2172CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, Bowles N, Hirshman MF, Xie J, Feener EP, Goodyear LJ (2008) Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 283(15):9787–9796CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ (2006) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(7):2067–2076CrossRefPubMedGoogle Scholar
  39. 39.
    Geraghty KM, Chen S, Harthill JE, Ibrahim AF, Toth R, Morrice NA, Vandermoere F, Moorhead GB, Hardie DG, MacKintosh C (2007) Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem J 407(2):231–241CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Koh HJ, Toyoda T, Fujii N, Jung MM, Rathod A, Middelbeek RJ, Lessard SJ, Treebak JT, Tsuchihara K, Esumi H, Richter EA, Wojtaszewski JF, Hirshman MF, Goodyear LJ (2010) Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 107(35):15541–15546CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jørgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Richter EA, Mikines KJ, Galbo H, Kiens B (1985) Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol 66(2):876–885Google Scholar
  43. 43.
    Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA (2000) Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49(7):1092–1095CrossRefPubMedGoogle Scholar
  44. 44.
    Yan Z, Lira VA, Greene NP (2012) Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev 40(3):159–164PubMedPubMedCentralGoogle Scholar
  45. 45.
    Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH (2008) Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am J Physiol Endocrinol Metab 294(5):E882–E888CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Health Promotion Sciences, Graduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations