Advertisement

Mechanism for the Development of Bone Disease in Diabetes: Increased Oxidative Stress and Advanced Glycation End Products

  • Sho-ichi YamagishiEmail author
Chapter

Abstract

The prevalence and incidence of osteoporosis is high in diabetic patients. There is a growing body of evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under hyperglycemic and oxidative stress conditions, play a central role in osteoporosis and bone fractures in diabetes. Indeed, accumulation of AGE-modified cross-links of collagen alters bone strength and impairs its biomechanical properties. Further, AGE-modified proteins in the bone have been shown to disturb physiological function of osteoblasts and osteoclasts via oxidative stress generation through the interaction with the receptor for AGEs (RAGE). Therefore, activation of the AGE-RAGE system in the bone not only decreases bone mineral density but also impairs bone quality in patients with diabetes. In this review, I discuss the molecular mechanism for osteoporosis in diabetes, especially focusing on the AGE-RAGE-induced oxidative stress axis.

Keywords

AGEs Osteoporosis Oxidative stress RAGE Diabetes 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. No potential conflicts of interest relevant to this article were reported.

References

  1. 1.
    Osteoporosis Prevention, Diagnosis and Therapy: NIH Consensus Statement (2000)17:1–36. http://consensus.nih.gov/2000/2000Osteoporosis111html.htm
  2. 2.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chiang CH, Liu CJ, Chen PJ, Huang CC, Hsu CY, Chen ZY, Chan WL, Huang PH, Chen TJ, Chung CM, Lin SJ, Chen JW, Leu HB (2013) Hip fracture and risk of acute myocardial infarction: a nationwide study. J Bone Miner Res 28:404–411CrossRefPubMedGoogle Scholar
  4. 4.
    Koh GC, Tai BC, Ang LW, Heng D, Yuan JM, Koh WP (2013) All-cause and cause-specific mortality after hip fracture among Chinese women and men: the Singapore Chinese health study. Osteoporos Int 24:1981–1989CrossRefPubMedGoogle Scholar
  5. 5.
    Drake MT, Murad MH, Mauck KF, Lane MA, Undavalli C, Elraiyah T, Stuart LM, Prasad C, Shahrour A, Mullan RJ, Hazem A, Erwin PJ, Montori VM (2012) Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J Clin Endocrinol Metab 97:1861–1870CrossRefPubMedGoogle Scholar
  6. 6.
    Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R (2010) Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis 20:683–690CrossRefPubMedGoogle Scholar
  7. 7.
    Kurra S, Siris E (2011) Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab Res Rev 27:430–435CrossRefPubMedGoogle Scholar
  8. 8.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int 18:427–444CrossRefPubMedGoogle Scholar
  9. 9.
    Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328CrossRefPubMedGoogle Scholar
  10. 10.
    Pietschmann P, Patsch JM, Schernthaner G (2010) Diabetes and bone. Horm Metab Res 42:763–768CrossRefPubMedGoogle Scholar
  11. 11.
    Isidro ML, Ruano B (2010) Bone disease in diabetes. Curr Diabetes Rev 6:144–155CrossRefPubMedGoogle Scholar
  12. 12.
    De Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Osteoporos Int 16:1713–1720CrossRefPubMedGoogle Scholar
  13. 13.
    Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321CrossRefPubMedGoogle Scholar
  14. 14.
    Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251:87–101CrossRefPubMedGoogle Scholar
  15. 15.
    Yamagishi S, Imaizumi T (2005) Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 11:2279–2299CrossRefPubMedGoogle Scholar
  16. 16.
    Dyer DG, Blackledge JA, Thorpe SR, Baynes JW (1991) Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 266:11654–11660PubMedGoogle Scholar
  17. 17.
    Hein GE (2006) Glycation endproducts in osteoporosis – is there a pathophysiologic importance? Clin Chim Acta 371:32–36CrossRefPubMedGoogle Scholar
  18. 18.
    Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043:710–717CrossRefPubMedGoogle Scholar
  19. 19.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214CrossRefPubMedGoogle Scholar
  20. 20.
    Yamagishi S (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 46:217–224CrossRefPubMedGoogle Scholar
  21. 21.
    Stern D, Yan SD, Yan SF, Schmidt AM (2002) Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 54:1615–1625CrossRefPubMedGoogle Scholar
  22. 22.
    Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37:586–600CrossRefPubMedGoogle Scholar
  23. 23.
    Yamagishi S, Matsui T (2010) Smooth muscle cell pathophysiology and advanced glycation end products (AGEs). Curr Drug Targets 11:875–881CrossRefPubMedGoogle Scholar
  24. 24.
    Yamagishi S (2012) Potential clinical utility of advanced glycation end product cross-link breakers in age- and diabetes-associated disorders. Rejuvenation Res 15:564–572CrossRefPubMedGoogle Scholar
  25. 25.
    Yamagishi S, Nakamura K, Inoue H (2005) Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med Hypotheses 65:1013–1015CrossRefPubMedGoogle Scholar
  26. 26.
    Mercer N, Ahmed H, Etcheverry SB, Vasta GR, Cortizo AM (2007) Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells. Mol Cell Biochem 306:87–94CrossRefPubMedGoogle Scholar
  27. 27.
    Schurman L, McCarthy AD, Sedlinsky C, Gangoiti MV, Arnol V, Bruzzone L, Cortizo AM (2008) Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 116:333–340CrossRefPubMedGoogle Scholar
  28. 28.
    Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suh KS, Choi EM, Rhee SY, Kim YS (2014) Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Free Radic Res 48:206–217CrossRefPubMedGoogle Scholar
  30. 30.
    Choi EM, Suh KS, Rhee SY, Kim YS (2014) Sciadopitysin alleviates methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells by enhancing glyoxalase system and mitochondrial biogenesis. Free Radic Res 48:729–739CrossRefPubMedGoogle Scholar
  31. 31.
    Suh KS, Rhee SY, Kim YS, Choi EM (2014) Inhibitory effect of apocynin on methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells. J Appl Toxicol. doi: 10.1002/jat.3016 PubMedCentralGoogle Scholar
  32. 32.
    Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937CrossRefPubMedGoogle Scholar
  33. 33.
    Katayama Y, Celic S, Nagata N, Martin TJ, Findlay DM (1997) Nonenzymatic glycation of type I collagen modifies interaction with UMR 201-10B preosteoblastic cells. Bone 21:237–242CrossRefPubMedGoogle Scholar
  34. 34.
    McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM (2001) Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McCarthy AD, Uemura T, Etcheverry SB, Cortizo AM (2004) Advanced glycation endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int J Biochem Cell Biol 36:840–848CrossRefPubMedGoogle Scholar
  36. 36.
    Li G, Xu J, Li Z (2012) Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. Biochem Biophys Res Commun 423:684–689CrossRefPubMedGoogle Scholar
  37. 37.
    Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172CrossRefPubMedGoogle Scholar
  38. 38.
    McCarthy AD, Cortizo AM, Giménez Segura G, Bruzzone L, Etcheverry SB (1998) Non-enzymatic glycosylation of alkaline phosphatase alters its biological properties. Mol Cell Biochem 181:63–69CrossRefPubMedGoogle Scholar
  39. 39.
    Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, Taketomi S (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270PubMedGoogle Scholar
  40. 40.
    Dong XN, Qin A, Xu J, Wang X (2011) In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 49:174–183CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 282:5691–5703CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L, Nawroth P, Stern DM, Xiong WC (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, Yan SL, She JX, Stern DM, Isales CM, Mi QS (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340:1091–1097CrossRefPubMedGoogle Scholar
  44. 44.
    Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113:154–161CrossRefPubMedGoogle Scholar
  45. 45.
    Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, Mei L, Xiong WC (2008) HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res 23:1084–1096CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yamagishi S (2011) Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 12:2096–2102CrossRefPubMedGoogle Scholar
  48. 48.
    Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen WF (2010) Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol 9:66CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 191:453–465CrossRefPubMedGoogle Scholar
  50. 50.
    Larsen SA, Kassem M, Rattan SI (2012) Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells. Chem Cent J 6:18CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, Sugimoto T (2012) Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 91:286–296CrossRefPubMedGoogle Scholar
  52. 52.
    Mori K, Kitazawa R, Kondo T, Mori M, Hamada Y, Nishida M, Minami Y, Haraguchi R, Takahashi Y, Kitazawa S (2014) Diabetic osteopenia by decreased β-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene. PLoS One 9:e102797CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kume S, Kato S, Yamagishi S et al (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20:1647–1658CrossRefPubMedGoogle Scholar
  54. 54.
    Vanella L, Sanford C Jr, Kim DH, Abraham NG, Ebraheim N (2012) Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation. Int J Hypertens 2012:890671CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tang SY, Vashishth D (2010) Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 46:148–154CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Khosravi R, Sodek KL, Faibish M, Trackman PC (2014) Collagen advanced glycation inhibits its discoidin domain receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone 58:33–41CrossRefPubMedGoogle Scholar
  57. 57.
    Aoki C, Uto K, Honda K, Kato Y, Oda H (2013) Advanced glycation end products suppress lysyl oxidase and induce bone collagen degradation in a rat model of renal osteodystrophy. Lab Invest 93:1170–1183CrossRefPubMedGoogle Scholar
  58. 58.
    Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523CrossRefPubMedGoogle Scholar
  59. 59.
    Tang SY, Vashishth D (2011) The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 44:330–336CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML (2006) Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39:1073–1079CrossRefPubMedGoogle Scholar
  61. 61.
    Hein G, Weiss C, Lehmann G, Niwa T, Stein G, Franke S (2006) Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 65:101–104CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sangani R, Naime M, Zakhary I, Ahmad S, Chutkan N, Zhu A, Ha Y, Hamrick M, Isales C, Elsalanty M, Smith S, Liou GI, Fulzele S (2013) Regulation of vitamin C transporter in the type 1 diabetic mouse bone and bone marrow. Exp Mol Pathol 95:298–306CrossRefPubMedGoogle Scholar
  63. 63.
    Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019CrossRefPubMedGoogle Scholar
  64. 64.
    Hein G, Wiegand R, Lehmann G, Stein G, Franke S (2003) Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford) 42:1242–1246CrossRefGoogle Scholar
  65. 65.
    Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T (2008) Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 26:93–100CrossRefPubMedGoogle Scholar
  66. 66.
    Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M (2011) Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab 29:62–70CrossRefPubMedGoogle Scholar
  67. 67.
    Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC (2009) Health, aging, and body composition study. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T (2009) Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32:2263–2268CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yamagishi S, Matsui T, Nakamura K (2007) Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr Drug Targets 8:1138–1143CrossRefPubMedGoogle Scholar
  70. 70.
    Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727CrossRefPubMedGoogle Scholar
  71. 71.
    Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031CrossRefPubMedGoogle Scholar
  72. 72.
    Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835CrossRefPubMedGoogle Scholar
  73. 73.
    Humpert PM, Djuric Z, Kopf S, Rudofsky G, Morcos M, Nawroth PP, Bierhaus A (2007) Soluble RAGE but not endogenous secretory RAGE is associated with albuminuria in patients with type 2 diabetes. Cardiovasc Diabetol 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fukami A, Adachi H, Yamagishi S, Matsui T, Ueda S, Nakamura K, Enomoto M, Otsuka M, Kumagae S, Nanjo Y, Kumagai E, Esaki E, Murayama K, Hirai Y, Imaizumi T (2009) Factors associated with serum high mobility group box 1 (HMGB1) levels in a general population. Metabolism 58:1688–1693CrossRefPubMedGoogle Scholar
  75. 75.
    Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A (2014) High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int 25:1527–1533CrossRefPubMedGoogle Scholar
  77. 77.
    Jianbo L, Zhang H, Yan L, Xie M, Mei Y, Jiawei C (2013) Homocysteine, an additional factor, is linked to osteoporosis in postmenopausal women with type 2 diabetes. J Bone Miner Metab. doi: 10.1007/s00774-013-0548-4 PubMedGoogle Scholar
  78. 78.
    Yamada C, Fujimoto S, Ikeda K, Nomura Y, Matsubara A, Kanno M, Shide K, Tanaka K, Imai E, Fukuwatari T, Shibata K, Inagaki N (2011) Relationship of homocysteine and homocysteine-related vitamins to bone mineral density in Japanese patients with type 2 diabetes. J Diabetes Invest 2:233–239CrossRefGoogle Scholar
  79. 79.
    Kuyumcu ME, Yesil Y, Oztürk ZA, Cınar E, Kızılarslanoglu C, Halil M, Ulger Z, Yesil NK, Cankurtaran M, Arıoğul S (2012) The association between homocysteine (hcy) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch Gerontol Geriatr 55:739–743CrossRefPubMedGoogle Scholar
  80. 80.
    Ishii S, Miyao M, Mizuno Y, Tanaka-Ishikawa M, Akishita M, Ouchi Y (2014) Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos Int 25:1099–1105CrossRefPubMedGoogle Scholar
  81. 81.
    Brown DL, Robbins R (1999) Developments in the therapeutic applications of bisphosphonates. J Clin Pharmacol 39:651–660CrossRefPubMedGoogle Scholar
  82. 82.
    Van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264:108–111CrossRefPubMedGoogle Scholar
  83. 83.
    Yamagishi S, Abe R, Inagaki Y (2004) Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am J Pathol 165:1865–1874CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Okamoto T, Yamagishi S, Inagaki Y, Amano S, Koga K, Abe R, Takeuchi M, Ohno S, Yoshimura A, Makita Z (2002) Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 16:1928–1930PubMedGoogle Scholar
  85. 85.
    Okamoto T, Yamagishi S, Inagaki Y, Amano S, Takeuchi M, Kikuchi S, Ohno S, Yoshimura A (2002) Incadronate disodium inhibits advanced glycation end products-induced angiogenesis in vitro. Biochem Biophys Res Commun 297:419–424CrossRefPubMedGoogle Scholar
  86. 86.
    Yamagishi S, Matsui T, Nakamura K, Takeuchi M (2005) Minodronate, a nitrogen-containing bisphosphonate, inhibits advanced glycation end product-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation. Int J Tissue React 27:189–195PubMedGoogle Scholar
  87. 87.
    Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD (2008) Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. Eur J Pharmacol 600:140–147CrossRefPubMedGoogle Scholar
  88. 88.
    Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D (2009) Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 20:887–894CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354CrossRefPubMedGoogle Scholar
  90. 90.
    Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M, American Society for Bone and Mineral Research (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294CrossRefPubMedGoogle Scholar
  91. 91.
    Gangoiti MV, Anbinder PS, Cortizo AM, McCarthy AD (2013) Morphological changes induced by advanced glycation endproducts in osteoblastic cells: effects of co-incubation with alendronate. Acta Histochem 115:649–657CrossRefPubMedGoogle Scholar
  92. 92.
    Silverman SL (2010) New selective estrogen receptor modulators (SERMs) in development. Curr Osteoporos Rep 8:151–153CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Magnolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300CrossRefGoogle Scholar
  94. 94.
    Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21:655–666CrossRefPubMedGoogle Scholar
  95. 95.
    Pullerits R, d’Elia HF, Tarkowski A, Carlsten H (2009) The decrease of soluble RAGE levels in rheumatoid arthritis patients following hormone replacement therapy is associated with increased bone mineral density and diminished bone/cartilage turnover: a randomized controlled trial. Rheumatology (Oxford) 48:785–790CrossRefGoogle Scholar
  96. 96.
    Panuccio V, Mallamaci F, Tripepi G, Parlongo S, Cutrupi S, Asahi K, Miyata T, Zoccali C (2002) Low parathyroid hormone and pentosidine in hemodialysis patients. Am J Kidney Dis 40:810–815CrossRefPubMedGoogle Scholar
  97. 97.
    Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, Kuroda T (2011) Changes in the contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1–34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int 22:2373–2383CrossRefPubMedGoogle Scholar
  98. 98.
    Tanaka K, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T (2014) Active vitamin D possesses beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Pathophysiology and Therapeutics of Diabetic Vascular ComplicationsKurume University School of MedicineKurume-shiJapan

Personalised recommendations