Advertisement

Mechanism for the Development of Bone Disease in Diabetes: Abnormal Glucose Metabolism

  • Ryo OkazakiEmail author
  • Daisuke Inoue
Chapter

Abstract

Osteoporosis is now generally considered as a complication of diabetes mellitus (DM). Higher HbA1c level and presence of diabetic vascular complications and insulin use are associated with higher risk of fractures, indicating detrimental effects of chronic hyperglycemia on bone. Because bone mineral density does not seem to be affected by glycemic control, this chapter reviews the influence of abnormal glucose metabolism on bone and diabetes-associated factors causing impaired bone strength mainly from clinical studies. Results of human histomorphometrical studies and longitudinal metabolic bone marker studies indicate that bone turnover may not be generally suppressed in DM. With hyperglycemia bone resorption seems to be stimulated, whereas bone formation may be suppressed. Vitamin D deficiency is common in DM, which may or may not be associated with secondary hyperparathyroidism, could not account for such changes in bone turnover. Animal and in vitro studies support this concept. Hyperglycemia per se or via the accumulation of advanced glycation end products (AGEs) appears to stimulate osteoclasts while suppressing osteoblasts, and perhaps mesenchymal stem cells as well as osteocytes. AGE accumulation in bone matrix also compromises mechanical strength. More clinical longitudinal studies would be needed to further elucidate the influence of hyperglycemia in the development of osteoporosis associated with DM.

Keywords

Glycemic control Bone turnover Metabolic bone markers Vitamin D Advanced glycation end products 

References

  1. 1.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int 18(4):427–444. doi: 10.1007/s00198-006-0253-4 PubMedCrossRefGoogle Scholar
  2. 2.
    The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986. doi: 10.1056/nejm199309303291401 CrossRefGoogle Scholar
  3. 3.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853CrossRefGoogle Scholar
  4. 4.
    Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, Stolk L, Oei EH, van Meurs JB, Janssen JA, Hofman A, van Leeuwen JP, Witteman JC, Pols HA, Uitterlinden AG, Klaver CC, Franco OH, Rivadeneira F (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 36(6):1619–1628. doi: 10.2337/dc12-1188 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li CI, Liu CS, Lin WY, Chen CC, Yang SY, Chen HJ, Lin CC, Li TC (2015) Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan diabetes cohort study. J Bone Miner Res. doi: 10.1002/jbmr.2462 Google Scholar
  6. 6.
    Schwartz AV, Margolis KL, Sellmeyer DE, Vittinghoff E, Ambrosius WT, Bonds DE, Josse RG, Schnall AM, Simmons DL, Hue TF, Palermo L, Hamilton BP, Green JB, Atkinson HH, O’Connor PJ, Force RW, Bauer DC (2012) Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care 35(7):1525–1531. doi: 10.2337/dc11-2184 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Diabetes and risk of fracture: the Blue Mountains eye study. Diabetes Care 24(7):1198–1203PubMedCrossRefGoogle Scholar
  8. 8.
    Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23(8):1334–1342. doi: 10.1359/jbmr.080323 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Forsen L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42(8):920–925. doi: 10.1007/s001250051248 PubMedCrossRefGoogle Scholar
  10. 10.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2008) Combination of obesity with hyperglycemia is a risk factor for the presence of vertebral fractures in type 2 diabetic men. Calcif Tissue Int 83(5):324–331. doi: 10.1007/s00223-008-9178-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165(14):1612–1617. doi: 10.1001/archinte.165.14.1612 PubMedCrossRefGoogle Scholar
  12. 12.
    Neumann T, Samann A, Lodes S, Kastner B, Franke S, Kiehntopf M, Hemmelmann C, Lehmann T, Muller UA, Hein G, Wolf G (2011) Glycemic control is positively associated with prevalent fractures but not with bone mineral density in patients with Type 1 diabetes. Diabet Med 28(7):872–875. doi: 10.1111/j.1464-5491.2011.03286.x PubMedCrossRefGoogle Scholar
  13. 13.
    Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84(1):45–55. doi: 10.1007/s00223-008-9195-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86(1):32–38. doi: 10.1210/jcem.86.1.7139 PubMedCrossRefGoogle Scholar
  15. 15.
    Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17(4):495–500. doi: 10.1007/s00198-005-0013-x PubMedCrossRefGoogle Scholar
  16. 16.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48(7):1292–1299. doi: 10.1007/s00125-005-1786-3 PubMedCrossRefGoogle Scholar
  17. 17.
    Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 29(5):1025–1040. doi: 10.1002/jbmr.2210 PubMedCrossRefGoogle Scholar
  18. 18.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782PubMedCrossRefGoogle Scholar
  19. 19.
    Armas LA, Akhter MP, Drincic A, Recker RR (2012) Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 50(1):91–96. doi: 10.1016/j.bone.2011.09.055 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR (2012) Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 97(9):3240–3250. doi: 10.1210/jc.2012-1546 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Baek K, Hwang HR, Park HJ, Kwon A, Qadir AS, Ko SH, Woo KM, Ryoo HM, Kim GS, Baek JH (2014) TNF-alpha upregulates sclerostin expression in obese mice fed a high-fat diet. J Cell Physiol 229(5):640–650. doi: 10.1002/jcp.24487 PubMedCrossRefGoogle Scholar
  22. 22.
    Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28(1):22–34. doi: 10.1002/jbmr.1734 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, Rong H (2009) Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol 46(2):119–126. doi: 10.1007/s00592-008-0068-1 PubMedCrossRefGoogle Scholar
  24. 24.
    Fujii H, Hamada Y, Fukagawa M (2008) Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats. Bone 42(2):372–379. doi: 10.1016/j.bone.2007.10.007 PubMedCrossRefGoogle Scholar
  25. 25.
    Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients – a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25(6):1697–1708. doi: 10.1007/s00198-014-2676-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Nagasaka S, Murakami T, Uchikawa T, Ishikawa SE, Saito T (1995) Effect of glycemic control on calcium and phosphorus handling and parathyroid hormone level in patients with non-insulin-dependent diabetes mellitus. Endocr J 42(3):377–383PubMedCrossRefGoogle Scholar
  27. 27.
    Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P (1994) Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 23(1):43–54PubMedCrossRefGoogle Scholar
  28. 28.
    Sayinalp S, Gedik O, Koray Z (1995) Increasing serum osteocalcin after glycemic control in diabetic men. Calcif Tissue Int 57(6):422–425PubMedCrossRefGoogle Scholar
  29. 29.
    Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled non-insulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82(9):2915–2920. doi: 10.1210/jcem.82.9.4258 PubMedGoogle Scholar
  30. 30.
    Rosato MT, Schneider SH, Shapses SA (1998) Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in non-insulin-dependent diabetes mellitus. Calcif Tissue Int 63(2):107–111PubMedCrossRefGoogle Scholar
  31. 31.
    Capoglu I, Ozkan A, Ozkan B, Umudum Z (2008) Bone turnover markers in patients with type 2 diabetes and their correlation with glycosylated hemoglobin levels. J Int Med Res 36(6):1392–1398PubMedCrossRefGoogle Scholar
  32. 32.
    Kanazawa I, Yamaguchi T, Sugimoto T (2011) Relationship between bone biochemical markers versus glucose/lipid metabolism and atherosclerosis; a longitudinal study in type 2 diabetes mellitus. Diabetes Res Clin Pract 92(3):393–399. doi: 10.1016/j.diabres.2011.03.015 PubMedCrossRefGoogle Scholar
  33. 33.
    Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95(1):134–142. doi: 10.1210/jc.2009-0572 PubMedCrossRefGoogle Scholar
  34. 34.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443. doi: 10.1056/NEJMoa066224 PubMedCrossRefGoogle Scholar
  35. 35.
    Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G (2008) Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31(5):845–851. doi: 10.2337/dc07-2270 PubMedCrossRefGoogle Scholar
  36. 36.
    Borges JL, Bilezikian JP, Jones-Leone AR, Acusta AP, Ambery PD, Nino AJ, Grosse M, Fitzpatrick LA, Cobitz AR (2011) A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycemic control and bone mineral density after 80 weeks of treatment in drug-naive type 2 diabetes mellitus patients. Diabetes Obes Metab 13(11):1036–1046. doi: 10.1111/j.1463-1326.2011.01461.x PubMedCrossRefGoogle Scholar
  37. 37.
    Bilezikian JP, Josse RG, Eastell R, Lewiecki EM, Miller CG, Wooddell M, Northcutt AR, Kravitz BG, Paul G, Cobitz AR, Nino AJ, Fitzpatrick LA (2013) Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 98(4):1519–1528. doi: 10.1210/jc.2012-4018 PubMedCrossRefGoogle Scholar
  38. 38.
    van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, Diamant M, Romijn JA, Smit JW, Papapoulos SE (2012) Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol/Eur Fed Endocrinol Soc 166(4):711–716. doi: 10.1530/eje-11-1061 CrossRefGoogle Scholar
  39. 39.
    McNair P, Christensen MS, Madsbad S, Christiansen C, Transbol I (1981) Hypoparathyroidism in diabetes mellitus. Acta Endocrinol (Copenh) 96(1):81–86Google Scholar
  40. 40.
    McNair P (1988) Bone mineral metabolism in human type 1 (insulin dependent) diabetes mellitus. Dan Med Bull 35(2):109–121PubMedGoogle Scholar
  41. 41.
    Ishida H, Suzuki K, Someya Y, Nishimura M, Sugimoto C, Goto M, Taguchi Y, Kasahara H, Kadowaki S, Imura H et al (1993) Possible compensatory role of parathyroid hormone-related peptide on maintenance of calcium homeostasis in patients with non-insulin-dependent diabetes mellitus. Acta Endocrinol (Copenh) 129(6):519–524Google Scholar
  42. 42.
    Thalassinos NC, Hadjiyanni P, Tzanela M, Alevizaki C, Philokiprou D (1993) Calcium metabolism in diabetes mellitus: effect of improved blood glucose control. Diabet Med 10(4):341–344PubMedCrossRefGoogle Scholar
  43. 43.
    Akizawa T, Kinugasa E, Akiba T, Tsukamoto Y, Kurokawa K (1997) Incidence and clinical characteristics of hypoparathyroidism in dialysis patients. Kidney Int Suppl 62:S72–S74PubMedGoogle Scholar
  44. 44.
    Sugimoto T, Ritter C, Morrissey J, Hayes C, Slatopolsky E (1990) Effects of high concentrations of glucose on PTH secretion in parathyroid cells. Kidney Int 37(6):1522–1527PubMedCrossRefGoogle Scholar
  45. 45.
    Afzal S, Bojesen SE, Nordestgaard BG (2013) Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis. Clin Chem 59(2):381–391. doi: 10.1373/clinchem.2012.193003 PubMedCrossRefGoogle Scholar
  46. 46.
    Valina-Toth AL, Lai Z, Yoo W, Abou-Samra A, Gadegbeku CA, Flack JM (2010) Relationship of vitamin D and parathyroid hormone with obesity and body composition in African Americans. Clin Endocrinol 72(5):595–603. doi: 10.1111/j.1365-2265.2009.03676.x CrossRefGoogle Scholar
  47. 47.
    Ibero-Baraibar I, Navas-Carretero S, Abete I, Martinez JA, Zulet MA (2014) Increases in plasma 25(OH)D levels are related to improvements in body composition and blood pressure in middle-aged subjects after a weight loss intervention: longitudinal study. Clin Nutr (Edinb Scotl). doi: 10.1016/j.clnu.2014.11.004 Google Scholar
  48. 48.
    Rock CL, Emond JA, Flatt SW, Heath DD, Karanja N, Pakiz B, Sherwood NE, Thomson CA (2012) Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity (Silver Spring Md) 20(11):2296–2301. doi: 10.1038/oby.2012.57 CrossRefGoogle Scholar
  49. 49.
    Tzotzas T, Papadopoulou FG, Tziomalos K, Karras S, Gastaris K, Perros P, Krassas GE (2010) Rising serum 25-hydroxy-vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab 95(9):4251–4257. doi: 10.1210/jc.2010-0757 PubMedCrossRefGoogle Scholar
  50. 50.
    Hinton PS, LeCheminant JD, Smith BK, Rector RS, Donnelly JE (2009) Weight loss-induced alterations in serum markers of bone turnover persist during weight maintenance in obese men and women. J Am Coll Nutr 28(5):565–573PubMedCrossRefGoogle Scholar
  51. 51.
    Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96(4):507–515PubMedCrossRefGoogle Scholar
  52. 52.
    Fowlkes JL, Bunn RC, Cockrell GE, Clark LM, Wahl EC, Lumpkin CK, Thrailkill KM (2011) Dysregulation of the intrarenal vitamin D endocytic pathway in a nephropathy-prone mouse model of type 1 diabetes. Exp Diabetes Res 2011:269378. doi: 10.1155/2011/269378 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Thrailkill KM, Jo CH, Cockrell GE, Moreau CS, Fowlkes JL (2011) Enhanced excretion of vitamin D binding protein in type 1 diabetes: a role in vitamin D deficiency? J Clin Endocrinol Metab 96(1):142–149. doi: 10.1210/jc.2010-0980 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Anderson RL, Ternes SB, Strand KA, Rowling MJ (2010) Vitamin D homeostasis is compromised due to increased urinary excretion of the 25-hydroxycholecalciferol-vitamin D-binding protein complex in the Zucker diabetic fatty rat. Am J Physiol Endocrinol Metab 299(6):E959–E967. doi: 10.1152/ajpendo.00218.2010 PubMedCrossRefGoogle Scholar
  55. 55.
    Botolin S, McCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99(2):411–424. doi: 10.1002/jcb.20842 PubMedCrossRefGoogle Scholar
  56. 56.
    Cunha JS, Ferreira VM, Maquigussa E, Naves MA, Boim MA (2014) Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res 358(1):249–256. doi: 10.1007/s00441-014-1913-x PubMedCrossRefGoogle Scholar
  57. 57.
    Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T, Okuno Y, Nishizawa Y, Otani S, Morii H (1995) Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 10(7):1050–1056. doi: 10.1002/jbmr.5650100709 PubMedCrossRefGoogle Scholar
  58. 58.
    Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22(1):17–23PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshida O, Inaba M, Terada M, Shioi A, Nishizawa Y, Otani S, Morii H (1995) Impaired response of human osteosarcoma (MG-63) cells to human parathyroid hormone induced by sustained exposure to high glucose. Miner Electrolyte Metab 21(1-3):201–204PubMedGoogle Scholar
  60. 60.
    Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28(1):21–28PubMedCrossRefGoogle Scholar
  61. 61.
    Zhen D, Chen Y, Tang X (2010) Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complicat 24(5):334–344. doi: 10.1016/j.jdiacomp.2009.05.002 PubMedCrossRefGoogle Scholar
  62. 62.
    Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L (2012) High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone 50(1):276–288. doi: 10.1016/j.bone.2011.10.032 PubMedCrossRefGoogle Scholar
  63. 63.
    Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schutze N, Jakob F, Ebert R (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363(1):209–215. doi: 10.1016/j.bbrc.2007.08.161 PubMedCrossRefGoogle Scholar
  64. 64.
    Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17(10):1514–1523. doi: 10.1007/s00198-006-0155-5 PubMedCrossRefGoogle Scholar
  65. 65.
    Garnero P (2012) The contribution of collagen crosslinks to bone strength. Bone Key Rep 1:182. doi: 10.1038/bonekey.2012.182 CrossRefGoogle Scholar
  66. 66.
    Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12(2):181–188. doi: 10.1007/s11914-014-0202-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Khosravi R, Sodek KL, Faibish M, Trackman PC (2014) Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone 58:33–41. doi: 10.1016/j.bone.2013.10.001 PubMedCrossRefGoogle Scholar
  68. 68.
    Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11(7):931–937. doi: 10.1002/jbmr.5650110709 PubMedCrossRefGoogle Scholar
  69. 69.
    Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172. doi: 10.1196/annals.1433.044 PubMedCrossRefGoogle Scholar
  70. 70.
    Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD (2008) Opposing effects of bisphosphonates and advanced glycation end products on osteoblastic cells. Eur J Pharmacol 600(1–3):140–147. doi: 10.1016/j.ejphar.2008.10.031 PubMedCrossRefGoogle Scholar
  71. 71.
    Franke S, Ruster C, Pester J, Hofmann G, Oelzner P, Wolf G (2011) Advanced glycation end products affect growth and function of osteoblasts. Clin Exp Rheumatol 29(4):650–660PubMedGoogle Scholar
  72. 72.
    Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40(2):345–353. doi: 10.1016/j.bone.2006.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mercer N, Ahmed H, Etcheverry SB, Vasta GR, Cortizo AM (2007) Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells. Mol Cell Biochem 306(1-2):87–94. doi: 10.1007/s11010-007-9557-8 PubMedCrossRefGoogle Scholar
  74. 74.
    McCarthy AD, Etcheverry SB, Cortizo AM (2001) Effect of advanced glycation end products on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol 38(3):113–122PubMedCrossRefGoogle Scholar
  75. 75.
    Tanaka KI, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2015.02.091 Google Scholar
  76. 76.
    Cortizo AM, Lettieri MG, Barrio DA, Mercer N, Etcheverry SB, McCarthy AD (2003) Advanced glycation end products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK). Mol Cell Biochem 250(1-2):1–10PubMedCrossRefGoogle Scholar
  77. 77.
    Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation end products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658. doi: 10.1359/jbmr.050514 PubMedCrossRefGoogle Scholar
  78. 78.
    Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, Sugimoto T (2012) Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 91(4):286–296. doi: 10.1007/s00223-012-9641-2 PubMedCrossRefGoogle Scholar
  79. 79.
    Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, Sugimoto T (2014) Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-beta expression and secretion. Endocrinology 155(7):2402–2410. doi: 10.1210/en.2013-1818 PubMedCrossRefGoogle Scholar
  80. 80.
    Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 191(6):453–465. doi: 10.1159/000281826 PubMedCrossRefGoogle Scholar
  81. 81.
    Miyata T, Kawai R, Taketomi S, Sprague SM (1996) Possible involvement of advanced glycation end products in bone resorption. Nephrol Dial Transplant 11(Suppl 5):54–57PubMedCrossRefGoogle Scholar
  82. 82.
    Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, Taketomi S (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8(2):260–270PubMedGoogle Scholar
  83. 83.
    Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 282(8):5691–5703. doi: 10.1074/jbc.M610536200 PubMedCrossRefGoogle Scholar
  84. 84.
    Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation end products influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113(3):154–161. doi: 10.1080/13813450701602523 PubMedCrossRefGoogle Scholar
  85. 85.
    Takagi M, Kasayama S, Yamamoto T, Motomura T, Hashimoto K, Yamamoto H, Sato B, Okada S, Kishimoto T (1997) Advanced glycation end products stimulate interleukin-6 production by human bone-derived cells. J Bone Miner Res Off J Am Soc Bone Miner Res 12(3):439–446. doi: 10.1359/jbmr.1997.12.3.439 CrossRefGoogle Scholar
  86. 86.
    Dong XN, Qin A, Xu J, Wang X (2011) In situ accumulation of advanced glycation end products (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 49(2):174–183. doi: 10.1016/j.bone.2011.04.009 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L, Nawroth P, Stern DM, Xiong WC (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203(4):1067–1080. doi: 10.1084/jem.20051947 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, Yan SL, She JX, Stern DM, Isales CM, Mi QS (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340(4):1091–1097. doi: 10.1016/j.bbrc.2005.12.107 PubMedCrossRefGoogle Scholar
  89. 89.
    Borel O, Gineyts E, Bertholon C, Garnero P (2012) Cathepsin K preferentially solubilizes matured bone matrix. Calcif Tissue Int 91(1):32–39. doi: 10.1007/s00223-012-9604-7 PubMedCrossRefGoogle Scholar
  90. 90.
    Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93(3):1013–1019. doi: 10.1210/jc.2007-1270 PubMedCrossRefGoogle Scholar
  91. 91.
    Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T (2009) Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32(12):2263–2268. doi: 10.2337/dc09-0901 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94(7):2380–2386. doi: 10.1210/jc.2008-2498 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lee CH, Lee MK, Han HJ, Kim TH, Lee JH, and Kim SH (2012). The association between serum endogenous secretory receptor for advanced glycation end products and vertebral fractures in type 2 diabetes (Endocrinol Metab 27:289–94, Cheol Ho Lee et al.). Endocrinol Metab (Seoul, Korea) 27 (1):289–294. doi: 10.3803/EnM.2013.28.1.78
  94. 94.
    Neumann T, Lodes S, Kastner B, Franke S, Kiehntopf M, Lehmann T, Muller UA, Wolf G, Samann A (2014) High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycemic control. Osteoporos Int 25(5):1527–1533. doi: 10.1007/s00198-014-2631-7 PubMedCrossRefGoogle Scholar
  95. 95.
    Okazaki R, Miura M, Toriumi M, Taguchi M, Hirota Y, Fukumoto S, Fujita T, Tanaka K, Takeuchi A (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46(6):795–801PubMedCrossRefGoogle Scholar
  96. 96.
    Watanabe S, Takeuchi Y, Fukumoto S, Fujita H, Nakano T, Fujita T (2003) Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab 21(3):166–171. doi: 10.1007/s007740300026 PubMedCrossRefGoogle Scholar
  97. 97.
    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2009) Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(8):3031–3037PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Third Department of MedicineTeikyo University Chiba Medical CenterIchiharaJapan

Personalised recommendations