Advertisement

Fracture Risk in Diabetes

  • Masahiro YamamotoEmail author
  • Toshitsugu Sugimoto
Chapter

Abstract

Meta-analyses have revealed that the relative risk of hip fractures in patients with type 1 and type 2 diabetes mellitus is higher than that in nondiabetic subjects. The risk of fracture in diabetic patients increases along with a decrease in bone mineral density (BMD) similarly to those in nondiabetic patients. However, the observed risk of fracture is higher than the expected one by BMD in both type 1 and type 2 diabetic patients, indicating that precise estimation of bone fragility by BMD values in patients with diabetes is difficult. Bone strength consists of BMD and bone quality; for this reason, poor bone quality is the most suitable and explicable cause for elevated fracture risk in this population. Bone quality indicators closely related to bone fragility are required to be identified to establish a diagnostic method for osteoporosis in diabetic patients.

Keywords

Bone quality Low bone turnover Vertebral fracture pentosidine Advanced glycation end products (AGEs) 

References

  1. 1.
    Anonymous (1991) Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med 90(1):107–110Google Scholar
  2. 2.
    Tuominen JT, Impivaara O, Puukka P, Ronnemaa T (1999) Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22(7):1196–1200PubMedCrossRefGoogle Scholar
  3. 3.
    Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG (2000) Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest 23(5):295–303PubMedCrossRefGoogle Scholar
  4. 4.
    Campos Pastor MM, Lopez-Ibarra PJ, Escobar-Jimenez F, Serrano Pardo MD, Garcia-Cervigon AG (2000) Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 11(5):455–459PubMedCrossRefGoogle Scholar
  5. 5.
    Lopez-Ibarra PJ, Pastor MM, Escobar-Jimenez F, Pardo MD, Gonzalez AG, Luna JD et al (2001) Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr Pract 7(5):346–351PubMedCrossRefGoogle Scholar
  6. 6.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int 18(4):427–444PubMedCrossRefGoogle Scholar
  7. 7.
    Isaia G, Bodrato L, Carlevatto V, Mussetta M, Salamano G, Molinatti GM (1987) Osteoporosis in type II diabetes. Acta Diabetol Lat 24(4):305–310PubMedCrossRefGoogle Scholar
  8. 8.
    Wakasugi M, Wakao R, Tawata M, Gan N, Koizumi K, Onaya T (1993) Bone mineral density measured by dual energy x-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone 14(1):29–33PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 268(23):3333–3337PubMedCrossRefGoogle Scholar
  10. 10.
    Weinstock RS, Goland RS, Shane E, Clemens TL, Lindsay R, Bilezikian JP (1989) Bone mineral density in women with type II diabetes mellitus. J Bone Miner Res 4(1):97–101PubMedCrossRefGoogle Scholar
  11. 11.
    van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A et al (1995) Bone density in non-insulin-dependent diabetes mellitus. The Rotterdam study. Ann Intern Med 122(6):409–414PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86(1):32–38PubMedCrossRefGoogle Scholar
  13. 13.
    Forsen L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag health survey. Diabetologia 42(8):920–925PubMedCrossRefGoogle Scholar
  14. 14.
    Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24(7):1192–1197PubMedCrossRefGoogle Scholar
  15. 15.
    Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192. doi: 10.1001/jama.2011.715, 305/21/2184 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Weber G, Beccaria L, de’Angelis M, Mora S, Galli L, Cazzuffi MA et al (1990) Bone mass in young patients with type I diabetes. Bone Miner 8(1):23–30PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson DA, Jacober SJ (2001) Why do older women with diabetes have an increased fracture risk? J Clin Endocrinol Metab 86(1):29–31PubMedCrossRefGoogle Scholar
  19. 19.
    Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Diabetes and risk of fracture: the blue mountains eye study. Diabetes Care 24(7):1198–1203PubMedCrossRefGoogle Scholar
  20. 20.
    Patel S, Hyer S, Tweed K, Kerry S, Allan K, Rodin A et al (2008) Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcif Tissue Int 82(2):87–91PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz AV, Vittinghoff E, Sellmeyer DE, Feingold KR, de Rekeneire N, Strotmeyer ES et al (2008) Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 31(3):391–396. doi: 10.2337/dc07-1152, doi:dc07-1152 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL et al (2006) Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab 91(9):3404–3410PubMedCrossRefGoogle Scholar
  23. 23.
    Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24(4):702–709. doi: 10.1359/jbmr.081207 PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80(6):353–358PubMedCrossRefGoogle Scholar
  25. 25.
    Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV, Shepelkevich AP, Zhurava IV, Korolenko GG et al (2013) Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care. doi: 10.2337/dc12-1355 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Anonymous (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795Google Scholar
  27. 27.
    Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17(10):1514–1523PubMedCrossRefGoogle Scholar
  28. 28.
    Saito M, Marumo K (2013) Bone quality in diabetes. Front Endocrinol 4:72. doi: 10.3389/fendo.2013.00072 Google Scholar
  29. 29.
    Saito M, Fujii K, Soshi S, Tanaka T (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17(7):986–995PubMedCrossRefGoogle Scholar
  30. 30.
    Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79(3):160–168. doi: 10.1007/s00223-006-0035-1 PubMedCrossRefGoogle Scholar
  31. 31.
    Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M et al (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043:710–717PubMedCrossRefGoogle Scholar
  32. 32.
    Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93(3):1013–1019PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94(7):2380–2386PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hansma P, Yu H, Schultz D, Rodriguez A, Yurtsev EA, Orr J et al (2009) The tissue diagnostic instrument. Rev Sci Instrum 80(5):054303. doi: 10.1063/1.3127602 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29(4):787–795. doi: 10.1002/jbmr.2106 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T (2012) Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 97(4):1277–1284. doi: 10.1210/jc.2011-2537 PubMedCrossRefGoogle Scholar
  37. 37.
    Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A et al (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91(9):3355–3363. doi: 10.1210/jc.2006-0460, doi:jc.2006-0460 [pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2009) Serum osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures in men with type 2 diabetes. Calcif Tissue Int 85(3):228–234. doi: 10.1007/s00223-009-9272-4 PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277(46):44005–44012. doi: 10.1074/jbc.M208265200 PubMedCrossRefGoogle Scholar
  40. 40.
    Mohan S (1993) Insulin-like growth factor binding proteins in bone cell regulation. Growth Regul 3(1):67–70PubMedGoogle Scholar
  41. 41.
    Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S et al (2005) Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem 280(33):29912–29920. doi: 10.1074/jbc.M504516200 PubMedCrossRefGoogle Scholar
  42. 42.
    Ardawi MS, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA et al (2013) Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 56(2):355–362. doi: 10.1016/j.bone.2013.06.029 PubMedCrossRefGoogle Scholar
  43. 43.
    Kanazawa I, Yamaguchi T, Sugimoto T (2011) Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int 22(4):1191–1198. doi: 10.1007/s00198-010-1310-6 PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamoto M, Yamauchi M, Sugimoto T (2013) Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 98(10):4030–4037. doi: 10.1210/jc.2013-2143 PubMedCrossRefGoogle Scholar
  45. 45.
    Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S et al (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749PubMedCrossRefGoogle Scholar
  46. 46.
    Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M et al (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108(2):261–268PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39(12):871–875PubMedCrossRefGoogle Scholar
  48. 48.
    Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S et al (2012) Advanced Glycation End Products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 91(4):286–296. doi: 10.1007/s00223-012-9641-2 PubMedCrossRefGoogle Scholar
  49. 49.
    Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I et al (2014) Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-beta expression and secretion. Endocrinology 155(7):2402–2410. doi: 10.1210/en.2013-1818 PubMedCrossRefGoogle Scholar
  50. 50.
    Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B et al (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340(4):1091–1097PubMedCrossRefGoogle Scholar
  51. 51.
    Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H et al (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370(Pt 3):1097–1109PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T (2009) Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32(12):2263–2268. doi: 10.2337/dc09-0901, doi:dc09-0901 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Petit MA, Paudel ML, Taylor BC, Hughes JM, Strotmeyer ES, Schwartz AV et al (2010) Bone mass and strength in older men with type 2 diabetes: the osteoporotic fractures in men study. J Bone Miner Res 25(2):285–291. doi: 10.1359/jbmr.090725 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 36(6):1619–1628. doi: 10.2337/dc12-1188 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055. doi: 10.1210/jc.2010-0226, doi:jc.2010-0226 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB et al (2013) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28(2):313–324. doi: 10.1002/jbmr.1763 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98(2):602–609. doi: 10.1210/jc.2012-3118 PubMedCrossRefGoogle Scholar
  58. 58.
    Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y et al (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82(9):2915–2920PubMedGoogle Scholar
  59. 59.
    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S et al (2009) Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(8):3031–3037. doi: 10.1210/jc.2008-2187, doi:jc.2008-2187 [pii]PubMedCrossRefGoogle Scholar
  60. 60.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48(7):1292–1299PubMedCrossRefGoogle Scholar
  61. 61.
    Monami M, Cresci B, Colombini A, Pala L, Balzi D, Gori F et al (2008) Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 31(2):199–203. doi: 10.2337/dc07-1736, doi:dc07-1736 [pii]PubMedCrossRefGoogle Scholar
  62. 62.
    Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23(8):1334–1342. doi: 10.1359/jbmr.080323 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T (2010) Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab 28(5):554–560. doi: 10.1007/s00774-010-0160-9 PubMedCrossRefGoogle Scholar
  64. 64.
    Kim JH, Jung MH, Lee JM, Son HS, Cha BY, Chang SA (2012) Diabetic peripheral neuropathy is highly associated with nontraumatic fractures in Korean patients with type 2 diabetes mellitus. Clin Endocrinol (Oxf) 77(1):51–55. doi: 10.1111/j.1365-2265.2011.04222.x CrossRefGoogle Scholar
  65. 65.
    Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR et al (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. doi: 10.1007/s00125-014-3289-6 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D et al (2005) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37(6):759–769. doi: 10.1016/j.bone.2005.06.021 PubMedCrossRefGoogle Scholar
  67. 67.
    Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M et al (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20(7):1644–1651. doi: 10.1210/me.2005-0187 PubMedCrossRefGoogle Scholar
  68. 68.
    Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N et al (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149(2):574–579. doi: 10.1210/en.2007-1292 PubMedCrossRefGoogle Scholar
  69. 69.
    Nuche-Berenguer B, Moreno P, Portal-Nunez S, Dapia S, Esbrit P, Villanueva-Penacarrillo ML (2010) Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept 159(1–3):61–66. doi: 10.1016/j.regpep.2009.06.010, doi:S0167-0115(09)00148-7 [pii]PubMedCrossRefGoogle Scholar
  70. 70.
    Monami M, Dicembrini I, Antenore A, Mannucci E (2011) Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 34(11):2474–2476. doi: 10.2337/dc11-1099 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hirshberg B, Parker A, Edelberg H, Donovan M, Iqbal N (2014) Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 30(7):556–569. doi: 10.1002/dmrr.2502 PubMedCrossRefGoogle Scholar
  72. 72.
    Mabilleau G, Mieczkowska A, Chappard D (2014) Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes 6(3):260–266. doi: 10.1111/1753-0407.12102 PubMedCrossRefGoogle Scholar
  73. 73.
    Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjostrom CD et al (2013) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. doi: 10.1111/dom.12189 PubMedGoogle Scholar
  74. 74.
    Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180(1):32–39. doi: 10.1503/cmaj.080486, doi:cmaj.080486 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30(6):1574–1576PubMedCrossRefGoogle Scholar
  76. 76.
    Colhoun HM, Livingstone SJ, Looker HC, Morris AD, Wild SH, Lindsay RS et al (2012) Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 55(11):2929–2937. doi: 10.1007/s00125-012-2668-0 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bazelier MT, de Vries F, Vestergaard P, Herings RM, Gallagher AM, Leufkens HG et al (2013) Risk of fracture with thiazolidinediones: an individual patient data meta-analysis. Front Endocrinol 4:11. doi: 10.3389/fendo.2013.00011 Google Scholar
  78. 78.
    Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S et al (2004) Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) study. J Bone Miner Res 19(5):764–772. doi: 10.1359/JBMR.040211 PubMedCrossRefGoogle Scholar
  79. 79.
    Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21(4):655–666. doi: 10.1007/s00198-009-0980-4 PubMedCrossRefGoogle Scholar
  80. 80.
    Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R et al (2011) Changes in the contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1–34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int 22(8):2373–2383. doi: 10.1007/s00198-010-1454-4 PubMedCrossRefGoogle Scholar
  81. 81.
    Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL (2004) Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 27(7):1547–1553PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Internal Medicine 1Shimane University Faculty of MedicineIzumoJapan

Personalised recommendations