Advertisement

Evaluation of Insulin Resistance in Diabetes: Standard Protocol for a Euglycemic-Hyperinsulinemic Clamp Using an Artificial Pancreas

  • Masanori EmotoEmail author
  • Tomoaki Morioka
  • Hisayo Yokoyama
  • Yuko Sawada-Yamazaki
  • Koka Motoyama
  • Katsuhito Mori
  • Kiyoshi Maekawa
  • Yoshiki Nishizawa
  • Masaaki Inaba
Chapter

Abstract

Insulin resistance plays a pivotal pathognomonic role in various pathophysiological states, including diabetes, obesity, and metabolic syndromes. A euglycemic-hyperinsulinemic (EH) clamp, the gold-standard method for evaluating insulin resistance in humans, has been performed according to the original protocol for each hospital or institute, which makes it difficult to compare the findings of different studies. We have established a standard protocol for the EH clamp using an artificial pancreas (AP, models STG-22 and STG-55, Nikkiso Co. Ltd. Tokyo), which has been widely used in Japan since 1987. Among the 351 Japanese subjects, 301 were type 2 diabetics, 12 were impaired glucose tolerance with obesity, and 38 had normal glucose tolerance. In this chapter, the standard protocol using the AP and the insulin resistance data are described in detail. By using an AP for the clamp, stable steady-state euglycemia and glucose infusion rates (GIR, metabolizable glucose [M] value) were achieved with high precision. The insulin resistance index, M/I, in type 2 diabetics was approximately 49 % lower than in patients with normal glucose tolerance and had a strong inverse correlation with body mass index. Furthermore, the validity and clinical implications of insulin resistance were clarified and reported according to the standard protocol for an EH clamp using an AP. In conclusion, a standard protocol for using an AP for an EH clamp would allow us to evaluate insulin resistance in detail and with high precision in various pathological states/diseases.

Keywords

Insulin resistance Euglycemic-hyperinsulinemic clamp Artificial pancreas Diabetes Japanese 

Notes

Acknowledgments

We sincerely acknowledge the contribution of our colleagues, known as “clampers” in our hospitals, who have been engaged in euglycemic clamp projects using the STG-22 and STG-55 models of the artificial pancreas since 1993, especially Yoshikazu Hiura MD PhD, Kyoko Satoh-Kogawa MD PhD, Hiroyuki Kanda MD PhD, Miyoko Matsuyoshi-Komatsu MD PhD, Shigehiko Fujiwara MD PhD, Takahiro Araki MD PhD, Megumi Teramura-Okada MD PhD, Eiko Lee-Kobayashi MD PhD, Naoya Kawano MD PhD, and Satoshi Imamura MD PhD.

References

  1. 1.
    DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223PubMedGoogle Scholar
  2. 2.
    Kahn CR (1978) Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 27(12 Suppl 2):1893–1902CrossRefPubMedGoogle Scholar
  3. 3.
    Campbell PJ, Mandarino LJ, Gerich JE (1988) Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism 37(1):15–21CrossRefPubMedGoogle Scholar
  4. 4.
    DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37(6):667–687CrossRefPubMedGoogle Scholar
  5. 5.
    Ishimura E, Nishizawa Y, Emoto M, Maekawa K, Morii H (1996) Effect of insulin on urinary phosphate excretion in type II diabetes mellitus with or without renal insufficiency. Metabolism 45(6):782–786CrossRefPubMedGoogle Scholar
  6. 6.
    Emoto M, Nishizawa Y, Maekawa K, Kawagishi T, Kogawa K, Hiura Y, Mori K, Tanaka S, Ishimura E, Inaba M, Okuno Y, Morii H (1997) Insulin resistance in non-obese, non-insulin-dependent diabetic patients with diabetic nephropathy. Metabolism 46(9):1013–1018CrossRefPubMedGoogle Scholar
  7. 7.
    Shoji T, Nishizawa Y, Emoto M, Maekawa K, Hiura Y, Tanaka S, Kawagishi T, Okuno Y, Morii H (1997) Renal function and insulin resistance as determinants of plasma leptin levels in patients with NIDDM. Diabetologia 40(6):676–679. doi: 10.1007/s001250050733 CrossRefPubMedGoogle Scholar
  8. 8.
    Emoto M, Nishizawa Y, Kawagishi T, Maekawa K, Hiura Y, Kanda H, Izumotani K, Shoji T, Ishimura E, Inaba M, Okuno Y, Morii H (1998) Stiffness indexes beta of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care 21(7):1178–1182CrossRefPubMedGoogle Scholar
  9. 9.
    Emoto M, Nishizawa Y, Maekawa K, Hiura Y, Kanda H, Kawagishi T, Shoji T, Okuno Y, Morii H (1999) Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 22(5):818–822CrossRefPubMedGoogle Scholar
  10. 10.
    Emoto M, Kanda H, Shoji T, Kawagishi T, Komatsu M, Mori K, Tahara H, Ishimura E, Inaba M, Okuno Y, Nishizawa Y (2001) Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. Diabetes Care 24(3):533–538CrossRefPubMedGoogle Scholar
  11. 11.
    Shoji T, Emoto M, Nishizawa Y (2001) HOMA index to assess insulin resistance in renal failure patients. Nephron 89(3):348–349, doi:46098CrossRefPubMedGoogle Scholar
  12. 12.
    Kawasaki I, Tahara H, Emoto M, Shoji T, Shioji A, Okuno Y, Inaba M, Nishizawa Y (2002) Impact of Prol2Ala variant in the peroxisome proliferator-activated receptor (PPAR) gamma2 on obesity and insulin resistance in Japanese Type 2 diabetic and healthy subjects. Osaka City Med J 48(1):23–28PubMedGoogle Scholar
  13. 13.
    Fujiwara S, Emoto M, Komatsu M, Motoyama K, Morioka T, Koyama H, Shoji T, Inaba M, Nishizawa Y (2003) Arterial wall thickness is associated with insulin resistance in type 2 diabetic patients. J Atheroscler Thromb 10(4):246–252CrossRefPubMedGoogle Scholar
  14. 14.
    Motoyama K, Emoto M, Tahara H, Komatsu M, Shoji T, Inaba M, Nishizawa Y (2003) Association of muscle glycogen synthase polymorphism with insulin resistance in type 2 diabetic patients. Metabolism 52(7):895–899CrossRefPubMedGoogle Scholar
  15. 15.
    Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Komatsu M, Tahara H, Shoji T, Okuno Y, Nishizawa Y (2003) Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients. Diabetes Care 26(8):2426–2432CrossRefPubMedGoogle Scholar
  16. 16.
    Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Komatsu M, Tahara H, Koyama H, Shoji T, Inaba M, Nishizawa Y (2004) Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment are useful indexes of insulin resistance in type 2 diabetic patients with wide range of fasting plasma glucose. J Clin Endocrinol Metab 89(3):1481–1484CrossRefPubMedGoogle Scholar
  17. 17.
    Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Koyama H, Shoji T, Inaba M, Nishizawa Y (2004) Short-term aerobic exercise improves arterial stiffness in type 2 diabetes. Diabetes Res Clin Pract 65(2):85–93. doi: 10.1016/j.diabres.2003.12.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Yokoyama H, Emoto M, Mori K, Araki T, Teramura M, Koyama H, Shoji T, Inaba M, Nishizawa Y (2006) Plasma adiponectin level is associated with insulin-stimulated nonoxidative glucose disposal. J Clin Endocrinol Metab 91(1):290–294. doi: 10.1210/jc.2004-2549 CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuhisa M, Yamasaki Y, Emoto M, Shimabukuro M, Ueda S, Funahashi T, Matsuzawa Y (2007) A novel index of insulin resistance determined from the homeostasis model assessment index and adiponectin levels in Japanese subjects. Diabetes Res Clin Pract 77(1):151–154. doi: 10.1016/j.diabres.2006.10.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Yokoyama H, Mori K, Emoto M, Araki T, Teramura M, Mochizuki K, Tashiro T, Motozuka K, Inoue Y, Nishizawa Y (2008) Non-oxidative glucose disposal is reduced in type 2 diabetes, but can be restored by aerobic exercise. Diabetes Obes Metab 10(5):400–407. doi: 10.1111/j.1463-1326.2007.00716.x CrossRefPubMedGoogle Scholar
  21. 21.
    Mori K, Emoto M, Motoyama K, Lee E, Yamada S, Morioka T, Imanishi Y, Shoji T, Inaba M (2012) Undercarboxylated osteocalcin does not correlate with insulin resistance as assessed by euglycemic hyperinsulinemic clamp technique in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 4(1):53. doi: 10.1186/1758-5996-4-53 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tajiri Y, Sato S, Kato T, Nakayama H, Yamada K (2011) Surrogate index for insulin sensitivity composed of factors not using glucose and insulin in Japanese patients with diabetes. J Diabetes Invest 2(2):140–147. doi: 10.1111/j.2040-1124.2010.00076.x CrossRefGoogle Scholar
  23. 23.
    Tajiri Y, Sato S, Yamada K (2011) Metabolic clearance rate is a more robust and physiological parameter for insulin sensitivity than glucose infusion rate in the isoglycemic glucose clamp technique. Diabetes Technol Ther 13(10):1057–1061. doi: 10.1089/dia.2011.0042 CrossRefPubMedGoogle Scholar
  24. 24.
    Kato K, Takamura T, Takeshita Y, Ryu Y, Misu H, Ota T, Tokuyama K, Nagasaka S, Matsuhisa M, Matsui O, Kaneko S (2014) Ectopic fat accumulation and distant organ-specific insulin resistance in Japanese people with nonalcoholic fatty liver disease. PLoS One 9(3), e92170. doi: 10.1371/journal.pone.0092170 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nishida K, Shimoda S, Ichinose K, Araki E, Shichiri M (2009) What is artificial endocrine pancreas? Mechanism and history. World J Gastroenterol 15(33):4105–4110CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W (1974) An artificial endocrine pancreas. Diabetes 23(5):389–396CrossRefPubMedGoogle Scholar
  27. 27.
    Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W, Schipper H, Gander R (1974) Clinical control of diabetes by the artificial pancreas. Diabetes 23(5):397–404CrossRefPubMedGoogle Scholar
  28. 28.
    Shichiri M, Kawamori R, Yamasaki Y, Inoue M, Shigeta Y, Abe H (1978) Computer algorithm for the artificial pancreatic beta cell. Artif Organs 2(suppl):247–250Google Scholar
  29. 29.
    Kawamori R, Shichiri M, Goriya Y, Yamasaki Y, Shigeta Y, Abe H (1978) Importance of insulin secretion based on the rate of change in blood glucose concentration in glucose tolerance, assessed by the artificial beta cell. Acta Endocrinol (Copenh) 87(2):339–351Google Scholar
  30. 30.
    Andrews J, Klimes I, Vasquez B, Nagulesparan M, Reaven GM (1984) Can mixed venous blood be used to measure insulin action during the hyperinsulinemic clamp? Horm Metab Res 16(Suppl 1):164–166. doi: 10.1055/s-2007-1014924 PubMedGoogle Scholar
  31. 31.
    Wahab PJ, Rijnsburger AW, Oolbekkink M, Heine RJ (1992) Venous versus arterialized venous blood for assessment of blood glucose levels during glucose clamping: comparison in healthy men. Horm Metab Res 24(12):576–579. doi: 10.1055/s-2007-1003393 CrossRefPubMedGoogle Scholar
  32. 32.
    Morris AD, Ueda S, Petrie JR, Connell JM, Elliott HL, Donnelly R (1997) The euglycemic hyperinsulinemic clamp: an evaluation of current methodology. Clin Exp Pharmacol Physiol 24(7):513–518CrossRefPubMedGoogle Scholar
  33. 33.
    Liu D, Moberg E, Kollind M, Lins PE, Adamson U, Macdonald IA (1992) Arterial, arterialized venous, venous and capillary blood glucose measurements in normal man during hyperinsulinemic euglycemia and hypoglycemia. Diabetologia 35(3):287–290CrossRefPubMedGoogle Scholar
  34. 34.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMedGoogle Scholar
  35. 35.
    Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12):2191–2192CrossRefPubMedGoogle Scholar
  36. 36.
    Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495CrossRefPubMedGoogle Scholar
  37. 37.
    Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85(7):2402–2410. doi: 10.1210/jcem.85.7.6661 CrossRefPubMedGoogle Scholar
  38. 38.
    Chen H, Sullivan G, Yue LQ, Katz A, Quon MJ (2003) QUICKI is a useful index of insulin sensitivity in subjects with hypertension. Am J Physiol Endocrinol Metab 284(4):E804–E812CrossRefPubMedGoogle Scholar
  39. 39.
    Lundbaek K (1962) Intravenous glucose tolerance as a tool in definition and diagnosis of diabetes mellitus. Br Med J 1(5291):1507–1513CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bonora E, Moghetti P, Zancanaro C, Cigolini M, Querena M, Cacciatori V, Corgnati A, Muggeo M (1989) Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J Clin Endocrinol Metab 68(2):374–378. doi: 10.1210/jcem-68-2-374 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Masanori Emoto
    • 1
    Email author
  • Tomoaki Morioka
    • 1
  • Hisayo Yokoyama
    • 2
  • Yuko Sawada-Yamazaki
    • 1
  • Koka Motoyama
    • 1
  • Katsuhito Mori
    • 1
  • Kiyoshi Maekawa
    • 1
  • Yoshiki Nishizawa
    • 3
  • Masaaki Inaba
    • 1
  1. 1.Metabolism, Endocrinology and Molecular MedicineOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Research Center for Urban Health and SportsOsaka City UniversityOsakaJapan
  3. 3.Osaka City UniversityOsakaJapan

Personalised recommendations