Mechanism of Skeletal Muscle Contraction: Role of Mechanical Muscle Contraction in Glucose Homeostasis

  • Yasuro FuruichiEmail author


Physical exercise has beneficial effects on whole-body glucose homeostasis and reduces the risk of metabolic diseases such as obesity, diabetes, and insulin resistance. Muscle contraction increases glucose uptake by skeletal muscle cells via an insulin-independent signaling mechanism. There is an increasing evidence that contraction-induced glucose uptake is mediated by AMP-activated protein kinase (AMPK), an energy sensor in skeletal muscle. Recent studies have identified another signaling pathway involving sucrose nonfermenting AMPK-related kinase that is activated by muscle contraction. Acute muscle contraction also activates insulin-induced glucose transport, and TBC1D4 has been identified as a regulator of insulin sensitization. Increased lipid oxidation and utilization resulting from chronic muscle contraction can stimulate insulin-induced glucose transport, since tissue accumulation of lipid metabolites—that is, lipotoxicity—is a basis for insulin resistance. Carnitine also normalizes intracellular lipid state by buffering excess accumulation of acetyl coenzyme A, a potent inhibitor of key enzymes in glucose metabolism. Finally, chronic exercise affects not only skeletal muscle but also pancreatic function and enhances insulin secretion. The current knowledge regarding the mechanism of glucose uptake induced by muscle contraction is summarized in this chapter.


AMPK TBC1D4 Insulin sensitivity Lipotoxicity 


  1. 1.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228CrossRefPubMedGoogle Scholar
  2. 2.
    DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007CrossRefPubMedGoogle Scholar
  3. 3.
    Martin IVAK, Katz A, Wahren J, Iva K (1995) Splanchnic and muscle metabolism during exercise in NIDDM patients. Am J Physiol Endocrinol Metab 269:583–590Google Scholar
  4. 4.
    Holloszy JO (2003) A forty-year memoir of research on the regulation of glucose transport into muscle. Am J Physiol Endocrinol Metab 284:E453–E467CrossRefPubMedGoogle Scholar
  5. 5.
    Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396CrossRefPubMedGoogle Scholar
  6. 6.
    Birk JB, Wojtaszewski JFP (2006) Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol 577:1021–1032CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887CrossRefPubMedGoogle Scholar
  8. 8.
    Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345(Pt 3):437–443CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329–3335CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, Alessi DR (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120CrossRefPubMedGoogle Scholar
  12. 12.
    Carling D (2004) The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem Sci 29:18–24CrossRefPubMedGoogle Scholar
  13. 13.
    Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855CrossRefPubMedGoogle Scholar
  14. 14.
    Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112PubMedGoogle Scholar
  15. 15.
    Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373PubMedGoogle Scholar
  16. 16.
    Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094CrossRefPubMedGoogle Scholar
  17. 17.
    Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, Goodyear LJ (2005) AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280:39033–39041CrossRefPubMedGoogle Scholar
  18. 18.
    Koh H-J, Toyoda T, Fujii N et al (2010) Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 107:15541–15546CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wright DC, Geiger PC, Holloszy JO, Han D-H (2005) Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metab 288:E1062–E1066CrossRefPubMedGoogle Scholar
  20. 20.
    Wright DC, Hucker KA, Holloszy JO, Han DH (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–335CrossRefPubMedGoogle Scholar
  21. 21.
    Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JFP, Richter EA (2007) Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293:E286–E292CrossRefPubMedGoogle Scholar
  22. 22.
    Raney MA, Turcotte LP (2008) Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol 104:1366–1373CrossRefPubMedGoogle Scholar
  23. 23.
    Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017CrossRefPubMedGoogle Scholar
  24. 24.
    Jensen TE, Sylow L, Rose AJ, Madsen AB, Angin Y, Maarbjerg SJ, Richter EA (2014) Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Mol Metab 3:742–753CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066CrossRefPubMedGoogle Scholar
  26. 26.
    Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19CrossRefPubMedGoogle Scholar
  27. 27.
    Witczak CA, Fujii N, Hirshman MF, Goodyear LJ (2007) Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes 56:1403–1409CrossRefPubMedGoogle Scholar
  28. 28.
    Witczak CA, Jessen N, Warro DM, Toyoda T, Fujii N, Anderson ME, Hirshman MF, Goodyear LJ (2010) CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab 298:E1150–E1160CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295:E29–E37CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mîinea CP, Sano H, Kane S, Sano E, Fukuda M, Peränen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roach WG, Chavez JA, Mîinea CP, Lienhard GE (2007) Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J 403:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cartee GD (2015) Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 58:19–30CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wojtaszewski JF, Hansen BF, Gade, Kiens B, Markuns JF, Goodyear LJ, Richter EA (2000) Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49:325–331CrossRefPubMedGoogle Scholar
  34. 34.
    Jessen N, Pold R, Buhl ES, Jensen LS, Schmitz O, Lund S (2003) Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94:1373–1379CrossRefPubMedGoogle Scholar
  35. 35.
    Friedrichsen M, Mortensen B, Pehmøller C, Birk JB, Wojtaszewski JFP (2013) Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol 366:204–214CrossRefPubMedGoogle Scholar
  36. 36.
    Richter E, Mikines K, Galbo H, Kiens B (1989) Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol 66:876–885PubMedGoogle Scholar
  37. 37.
    Castorena CM, Arias EB, Sharma N, Cartee GD (2014) Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin-resistant rats. Diabetes 63:2297–2308CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hansen PA, Nolte LA, Chen MM, Holloszy JO (1998) Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol 85:1218–1222PubMedGoogle Scholar
  39. 39.
    Schweitzer GG, Arias EB, Cartee GD (2012) Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol 113:1852–1861CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Funai K, Schweitzer GG, Sharma N, Kanzaki M, Cartee GD (2009) Increased AS160 phosphorylation, but not TBC1D1 phosphorylation, with increased postexercise insulin sensitivity in rat skeletal muscle. Am J Physiol Endocrinol Metab 297:E242–E251CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pehmøller C, Brandt N, Birk JB, Høeg LD, Sjøberg KA, Goodyear LJ, Kiens B, Richter EA, Wojtaszewski JFP (2012) Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4. Diabetes 61:2743–2752CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Treebak JT, Frøsig C, Pehmøller C et al (2009) Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia 52:891–900CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Seals DR, Hagberg JM, Allen WK, Hurley BF, Dalsky GP, Ehsani AA, Holloszy JO (1984) Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 56:1521–1525PubMedGoogle Scholar
  44. 44.
    Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ (1993) Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264:E855–E862PubMedGoogle Scholar
  45. 45.
    Schneider SH, Amorosa LF, Khachadurian AK, Ruderman NB (1984) Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia 26:355–360CrossRefPubMedGoogle Scholar
  46. 46.
    Kawanaka K, Tabata I, Katsuta S, Higuchi M (1997) Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training. J Appl Physiol 83:2043–2047PubMedGoogle Scholar
  47. 47.
    Ivy JL (2004) Muscle insulin resistance amended with exercise training: role of GLUT4 expression. Med Sci Sports Exerc 36:1207–1211PubMedGoogle Scholar
  48. 48.
    Zierath JR (2002) Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 93:773–781CrossRefPubMedGoogle Scholar
  49. 49.
    Frøsig C, Rose AJ, Treebak JT, Kiens B, Richter EA, Wojtaszewski JFP (2007) Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56:2093–2102CrossRefPubMedGoogle Scholar
  50. 50.
    Vind BF, Pehmøller C, Treebak JT, Birk JB, Hey-Mogensen M, Beck-Nielsen H, Zierath JR, Wojtaszewski JFP, Højlund K (2011) Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia 54:157–167CrossRefPubMedGoogle Scholar
  51. 51.
    Consitt LA, van Meter J, Newton CA, Collier DN, Dar MS, Wojtaszewski JFP, Treebak JT, Tanner CJ, Houmard JA (2013) Impairments in site-specific AS160 phosphorylation and effects of exercise training. Diabetes 62:3437–3447CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bradley RL, Jeon JY, Liu F-F, Maratos-Flier E (2008) Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 295:E586–E594CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Park S, Hong SM, Lee JE, Sung SR (2007) Exercise improves glucose homeostasis that has been impaired by a high-fat diet by potentiating pancreatic beta-cell function and mass through IRS2 in diabetic rats. J Appl Physiol 103:1764–1771CrossRefPubMedGoogle Scholar
  54. 54.
    Farrell PA, Caston AL, Rodd D (1991) Changes in insulin response to glucose after exercise training in partially pancreatectomized rats. J Appl Physiol 70:1563–1568PubMedGoogle Scholar
  55. 55.
    Huang H-H, Farmer K, Windscheffel J, Yost K, Power M, Wright DE, Stehno-Bittel L (2011) Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp Diabetes Res 2011:481427PubMedPubMedCentralGoogle Scholar
  56. 56.
    Calegari VC, Zoppi CC, Rezende LF, Silveira LR, Carneiro EM, Boschero AC (2011) Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J Endocrinol 208:257–264PubMedGoogle Scholar
  57. 57.
    Farrell PA, Caston AL, Rodd D, Engdahl J (1992) Effect of training on insulin secretion from single pancreatic beta cells. Med Sci Sports Exerc 24:426–433CrossRefPubMedGoogle Scholar
  58. 58.
    Lamontagne J, Masiello P, Marcil M, Delghingaro-Augusto V, Burelle Y, Prentki M, Nolan CJ (2007) Circulating lipids are lowered but pancreatic islet lipid metabolism and insulin secretion are unaltered in exercise-trained female rats. Appl Physiol Nutr Metab 32:241–248CrossRefPubMedGoogle Scholar
  59. 59.
    Takagi M, Manabe Y (2014) Mechanisms underlying alterations in glucose metabolism due to exercise. J Phys Fit Sport Med 3:423–427CrossRefGoogle Scholar
  60. 60.
    Tsuchiya M, Manabe Y, Yamada K, Furuichi Y, Hosaka M, Fujii NL (2012) Chronic exercise enhances insulin secretion ability of pancreatic islets without change in insulin content in non-diabetic rats. Biochem Biophys Res Commun 430:676–682CrossRefPubMedGoogle Scholar
  61. 61.
    Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406CrossRefPubMedGoogle Scholar
  63. 63.
    Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988CrossRefPubMedGoogle Scholar
  64. 64.
    Muoio DM, Koves TR (2007) Lipid-induced metabolic dysfunction in skeletal muscle. Novartis Found Symp 286:24–38, discussion 38–46, 162–3, 196–203CrossRefPubMedGoogle Scholar
  65. 65.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176Google Scholar
  66. 66.
    Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236CrossRefPubMedGoogle Scholar
  68. 68.
    Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336CrossRefPubMedGoogle Scholar
  69. 69.
    Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL, Shulman GI (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56:1376–1381CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Adhihetty PJ, Irrcher I, Joseph A-M, Ljubicic V, Hood DA (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107CrossRefPubMedGoogle Scholar
  73. 73.
    Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52:2191–2197CrossRefPubMedGoogle Scholar
  74. 74.
    Holloway GP, Han XX, Jain SS, Bonen A, Chabowski A (2014) Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia 57:832–840CrossRefPubMedGoogle Scholar
  75. 75.
    Furuichi Y, Goto-Inoue N, Fujii NL (2014) Role of carnitine acetylation in skeletal muscle. J Phys Fit Sport Med 3:163–168CrossRefGoogle Scholar
  76. 76.
    Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:E855–E862CrossRefPubMedGoogle Scholar
  77. 77.
    Koves TR, Ussher JR, Noland RC et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56CrossRefPubMedGoogle Scholar
  78. 78.
    Thyfault JP, Cree MG, Tapscott EB, Bell JA, Koves TR, Ilkayeva O, Wolfe RR, Dohm GL, Muoio DM (2010) Metabolic profiling of muscle contraction in lean compared with obese rodents. Am J Physiol Regul Integr Comp Physiol 299:R926–R934CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM (2009) Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 284:22840–22852CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Muoio DM, Noland RC, Kovalik J-P et al (2012) Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab 15:764–777CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Seiler SE, Martin OJ, Noland RC, Slentz DH, Debalsi KL, Ilkayeva OR, An J, Newgard CB, Koves TR, Muoio DM (2014) Obesity and lipid stress inhibit carnitine acetyltransferase activity. J Lipid Res 55:635–644CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hiatt WR, Regensteiner JG, Wolfel EE, Ruff L, Brass EP (1989) Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J Clin Invest 84:1167–1173CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Foster CV, Harris RC (1987) Formation of acetylcarnitine in muscle of horse during high intensity exercise. Eur J Appl Physiol Occup Physiol 56:639–642CrossRefPubMedGoogle Scholar
  84. 84.
    Furuichi Y, Goto-Inoue N, Manabe Y, Setou M, Masuda K, Fujii NL (2014) Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochim Biophys Acta 1837:1699–1706CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang Z, Zhao M, Li Q, Zhao H, Wang J, Li Y (2009) Acetyl-l-carnitine inhibits TNF-alpha-induced insulin resistance via AMPK pathway in rat skeletal muscle cells. FEBS Lett 583:470–474CrossRefPubMedGoogle Scholar
  86. 86.
    Vukovich MD, Costill DL, Fink WJ (1994) Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise. Med Sci Sports Exerc 26:1122–1129CrossRefPubMedGoogle Scholar
  87. 87.
    Furuichi Y, Sugiura T, Kato Y, Shimada Y, Masuda K (2010) OCTN2 is associated with carnitine transport capacity of rat skeletal muscles. Acta Physiol (Oxf) 200:57–64Google Scholar
  88. 88.
    Furuichi Y, Sugiura T, Kato Y, Takakura H, Hanai Y, Hashimoto T, Masuda K (2012) Muscle contraction increases carnitine uptake via translocation of OCTN2. Biochem Biophys Res Commun 418:774–779CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Health Promotion Sciences, Graduate School of Human Health SciencesTokyo Metropolitan UniversityHachioji-cityJapan

Personalised recommendations