Mechanism of Skeletal Muscle Contraction: Intracellular Signaling in Skeletal Muscle Contraction

  • Yasuko ManabeEmail author


Regular exercise contributes to maintaining the skeletal muscle mass and quality, which may prevent type II diabetes, hypertension, coronary heart disease, and/or sarcopenia. Exercise/muscle contraction induces activation or inactivation of the intracellular molecules for a short period, which results in an increased glucose uptake, fatty acid oxidation, and protein synthesis. Exercise also affects transcription factors and coactivators, which change the target gene expression and are related to muscle adaptations such as increasing glucose transport-related protein, mitochondrial biogenesis, and the muscle fiber type transition over a long period. Alterations of these molecules are mediated by changes in the intracellular Ca2+ level, energy status level, and/or the activated mitogen-activated protein kinase (MAPK) signaling pathway. In this section, the intracellular signaling pathway induced by skeletal muscle contraction is discussed.


AMPK Calcium signaling MAPK 


  1. 1.
    Lieber RL (2009) Skeletal muscle structure, function, and plasticity. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Hawley JA, Hargreaves M, Zierath JR (2006) Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem 42:1–12. doi: 10.1042/bse0420001 PubMedCrossRefGoogle Scholar
  3. 3.
    Hook SS, Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505. doi: 10.1146/annurev.pharmtox.41.1.471 PubMedCrossRefGoogle Scholar
  4. 4.
    Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol (1985) 99(2):414–423. doi: 10.1152/japplphysiol.00015.2005 CrossRefGoogle Scholar
  5. 5.
    Witczak CA, Jessen N, Warro DM, Toyoda T, Fujii N, Anderson ME et al (2010) CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab 298(6):E1150–E1160. doi: 10.1152/ajpendo.00659.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER et al (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19(9):1963–1973. doi: 10.1093/emboj/19.9.1963 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Blaeser F, Ho N, Prywes R, Chatila TA (2000) Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem 275(1):197–209PubMedCrossRefGoogle Scholar
  8. 8.
    Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA et al (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105(10):1395–1406. doi: 10.1172/JCI8551 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6(2):233–244PubMedCrossRefGoogle Scholar
  10. 10.
    Ojuka EO, Goyaram V, Smith JA (2012) The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 303(3):E322–E331. doi: 10.1152/ajpendo.00091.2012 PubMedCrossRefGoogle Scholar
  11. 11.
    McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47PubMedCrossRefGoogle Scholar
  12. 12.
    Smith JA, Kohn TA, Chetty AK, Ojuka EO (2008) CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metab 295(3):E698–E704. doi: 10.1152/ajpendo.00747.2007 PubMedCrossRefGoogle Scholar
  13. 13.
    Manalan AS, Krinks MH, Klee CB (1984) Calcineurin: a member of a family of calmodulin-stimulated protein phosphatases. Proc Soc Exp Biol Med 177(1):12–16PubMedCrossRefGoogle Scholar
  14. 14.
    Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A 76(12):6270–6273PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Talmadge RJ, Otis JS, Rittler MR, Garcia ND, Spencer SR, Lees SJ et al (2004) Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol 5:28. doi: 10.1186/1471-2121-5-28 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kegley KM, Gephart J, Warren GL, Pavlath GK (2001) Altered primary myogenesis in NFATC3 (-/-) mice leads to decreased muscle size in the adult. Dev Biol 232(1):115–126. doi: 10.1006/dbio.2001.0179 PubMedCrossRefGoogle Scholar
  17. 17.
    Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275(7):4545–4548PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang LQ, Garcia-Roves PM, de Castro BT, Zierath JR (2010) Constitutively active calcineurin in skeletal muscle increases endurance performance and mitochondrial respiratory capacity. Am J Physiol Endocrinol Metab 298(1):E8–E16. doi: 10.1152/ajpendo.00403.2009 PubMedCrossRefGoogle Scholar
  19. 19.
    Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR et al (2004) Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279(25):26192–26200. doi: 10.1074/jbc.M313800200 PubMedCrossRefGoogle Scholar
  20. 20.
    Allen DL, Leinwand LA (2002) Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277(47):45323–45330. doi: 10.1074/jbc.M208302200 PubMedCrossRefGoogle Scholar
  21. 21.
    Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276(47):43524–43533. doi: 10.1074/jbc.M108017200 PubMedCrossRefGoogle Scholar
  22. 22.
    Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. doi: 10.1146/annurev.immunol.15.1.707 PubMedCrossRefGoogle Scholar
  23. 23.
    Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM et al (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20(22):6414–6423. doi: 10.1093/emboj/20.22.6414 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23(12):4331–4343PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170. doi: 10.1152/physiol.00041.2007 CrossRefGoogle Scholar
  26. 26.
    Gundersen K (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 86(3):564–600. doi: 10.1111/j.1469-185X.2010.00161.x PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95(3):307–318PubMedCrossRefGoogle Scholar
  28. 28.
    Cleland PJ, Appleby GJ, Rattigan S, Clark MG (1989) Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem 264(30):17704–17711PubMedGoogle Scholar
  29. 29.
    Richter EA, Cleland PJ, Rattigan S, Clark MG (1987) Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217(2):232–236PubMedCrossRefGoogle Scholar
  30. 30.
    Rose AJ, Michell BJ, Kemp BE, Hargreaves M (2004) Effect of exercise on protein kinase C activity and localization in human skeletal muscle. J Physiol 561(Pt 3):861–870. doi: 10.1113/jphysiol.2004.075549 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Perrini S, Henriksson J, Zierath JR, Widegren U (2004) Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 53(1):21–24PubMedCrossRefGoogle Scholar
  32. 32.
    Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA et al (2003) Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 312(4):1147–1153PubMedCrossRefGoogle Scholar
  33. 33.
    Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese RV Jr et al (2002) Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem 277(26):23554–23562. doi: 10.1074/jbc.M201152200 PubMedCrossRefGoogle Scholar
  34. 34.
    Wojtaszewski JF, Lynge J, Jakobsen AB, Goodyear LJ, Richter EA (1999) Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Am J Physiol 277(4 Pt 1):E724–E732PubMedGoogle Scholar
  35. 35.
    Hardie DG, Carling D (1997) The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem/FEBS 246(2):259–273CrossRefGoogle Scholar
  36. 36.
    Birk JB, Wojtaszewski JF (2006) Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol 577(Pt 3):1021–1032. doi: 10.1113/jphysiol.2006.120972 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wojtaszewski JF, Birk JB, Frosig C, Holten M, Pilegaard H, Dela F (2005) 5’AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564(Pt 2):563–573. doi: 10.1113/jphysiol.2005.082669 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101(10):3329–3335. doi: 10.1073/pnas.0308061100 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280(32):29060–29066. doi: 10.1074/jbc.M503824200 PubMedCrossRefGoogle Scholar
  40. 40.
    Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N et al (2006) Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26(22):8217–8227. doi: 10.1128/MCB.00979-06 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24(10):1810–1820. doi: 10.1038/sj.emboj.7600667 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U et al (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278(31):28434–28442. doi: 10.1074/jbc.M303946200 PubMedCrossRefGoogle Scholar
  43. 43.
    Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21–33. doi: 10.1016/j.cmet.2005.06.005 PubMedCrossRefGoogle Scholar
  44. 44.
    Stahmann N, Woods A, Carling D, Heller R (2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol 26(16):5933–5945. doi: 10.1128/MCB.00383-06 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG et al (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670. doi: 10.1084/jem.20052469 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jensen TE, Rose AJ, Jorgensen SB, Brandt N, Schjerling P, Wojtaszewski JF et al (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 292(5):E1308–E1317. doi: 10.1152/ajpendo.00456.2006 PubMedCrossRefGoogle Scholar
  47. 47.
    Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L et al (2000) Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273(3):1150–1155. doi: 10.1006/bbrc.2000.3073 PubMedCrossRefGoogle Scholar
  49. 49.
    Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000) Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49(4):527–531PubMedCrossRefGoogle Scholar
  50. 50.
    Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47(8):1369–1373PubMedGoogle Scholar
  51. 51.
    Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P et al (2004) Knockout of the alpha2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079. doi: 10.1074/jbc.M306205200 PubMedCrossRefGoogle Scholar
  52. 52.
    Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM et al (2005) AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280(47):39033–39041. doi: 10.1074/jbc.M504208200 PubMedCrossRefGoogle Scholar
  53. 53.
    Koh HJ, Toyoda T, Fujii N, Jung MM, Rathod A, Middelbeek RJ et al (2010) Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 107(35):15541–15546. doi: 10.1073/pnas.1008131107 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Friedrichsen M, Mortensen B, Pehmoller C, Birk JB, Wojtaszewski JF (2013) Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol 366(2):204–214. doi: 10.1016/j.mce.2012.06.013 PubMedCrossRefGoogle Scholar
  55. 55.
    Olson DP, Pulinilkunnil T, Cline GW, Shulman GI, Lowell BB (2010) Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. Proc Natl Acad Sci U S A 107(16):7598–7603. doi: 10.1073/pnas.0913492107 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487. doi: 10.1242/jcs.01540 PubMedCrossRefGoogle Scholar
  57. 57.
    Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104(29):12017–12022. doi: 10.1073/pnas.0705070104 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281(6):E1340–E1346PubMedGoogle Scholar
  59. 59.
    Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL (2005) Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 289(6):E1071–E1076. doi: 10.1152/ajpendo.00606.2004 PubMedCrossRefGoogle Scholar
  60. 60.
    Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol (1985) 95(3):960–968. doi: 10.1152/japplphysiol.00349.2003 CrossRefGoogle Scholar
  61. 61.
    Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56(8):2062–2069. doi: 10.2337/db07-0255 PubMedCrossRefGoogle Scholar
  62. 62.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801. doi: 10.1038/nature00904 PubMedCrossRefGoogle Scholar
  63. 63.
    Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y et al (2005) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19(9):1146–1148. doi: 10.1096/fj.04-3144fje PubMedGoogle Scholar
  64. 64.
    Sakamoto K, Goodyear LJ (2002) Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol (1985) 93(1):369–383. doi: 10.1152/japplphysiol.00167.2002 CrossRefGoogle Scholar
  65. 65.
    Goodyear LJ, Chang PY, Sherwood DJ, Dufresne SD, Moller DE (1996) Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol 271(2 Pt 1):E403–E408PubMedGoogle Scholar
  66. 66.
    Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L et al (1997) Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 272(48):30122–30128PubMedCrossRefGoogle Scholar
  67. 67.
    Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol (1985) 90(5):1936–1942Google Scholar
  68. 68.
    Boppart MD, Hirshman MF, Sakamoto K, Fielding RA, Goodyear LJ (2001) Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle. Am J Physiol Cell Physiol 280(2):C352–C358PubMedGoogle Scholar
  69. 69.
    Yu M, Blomstrand E, Chibalin AV, Krook A, Zierath JR (2001) Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. J Physiol 536(Pt 1):273–282PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Widegren U, Jiang XJ, Krook A, Chibalin AV, Bjornholm M, Tally M et al (1998) Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 12(13):1379–1389PubMedGoogle Scholar
  71. 71.
    Fryer LG, Parbu-Patel A, Carling D (2002) Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. FEBS Lett 531(2):189–192PubMedCrossRefGoogle Scholar
  72. 72.
    Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ (2004) p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 286(2):R342–R349. doi: 10.1152/ajpregu.00563.2003 PubMedCrossRefGoogle Scholar
  73. 73.
    Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA et al (2005) Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 146(9):3773–3781. doi: 10.1210/en.2005-0404 PubMedCrossRefGoogle Scholar
  74. 74.
    Ribe D, Yang J, Patel S, Koumanov F, Cushman SW, Holman GD (2005) Endofacial competitive inhibition of glucose transporter-4 intrinsic activity by the mitogen-activated protein kinase inhibitor SB203580. Endocrinology 146(4):1713–1717. doi: 10.1210/en.2004-1294 PubMedCrossRefGoogle Scholar
  75. 75.
    Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB et al (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280(20):19587–19593. doi: 10.1074/jbc.M408862200 PubMedCrossRefGoogle Scholar
  76. 76.
    Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M et al (2009) p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 4(11):e7934. doi: 10.1371/journal.pone.0007934 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P et al (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26(5):1245–1256. doi: 10.1038/sj.emboj.7601587 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252PubMedCrossRefGoogle Scholar
  79. 79.
    Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35(9):490–496. doi: 10.1016/j.tibs.2010.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bennett BL, Satoh Y, Lewis AJ (2003) JNK: a new therapeutic target for diabetes. Curr Opin Pharmacol 3(4):420–425PubMedCrossRefGoogle Scholar
  81. 81.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336. doi: 10.1038/nature01137 PubMedCrossRefGoogle Scholar
  82. 82.
    Sabio G, Kennedy NJ, Cavanagh-Kyros J, Jung DY, Ko HJ, Ong H et al (2010) Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Mol Cell Biol 30(1):106–115. doi: 10.1128/MCB.01162-09 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ et al (2008) A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322(5907):1539–1543. doi: 10.1126/science.1160794 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sabio G, Cavanagh-Kyros J, Ko HJ, Jung DY, Gray S, Jun JY et al (2009) Prevention of steatosis by hepatic JNK1. Cell Metab 10(6):491–498. doi: 10.1016/j.cmet.2009.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol (1985) 91(2):693–702Google Scholar
  86. 86.
    Aronson D, Violan MA, Dufresne SD, Zangen D, Fielding RA, Goodyear LJ (1997) Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 99(6):1251–1257. doi: 10.1172/JCI119282 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Aronson D, Dufresne SD, Goodyear LJ (1997) Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J Biol Chem 272(41):25636–25640PubMedCrossRefGoogle Scholar
  88. 88.
    Fujii N, Boppart MD, Dufresne SD, Crowley PF, Jozsi AC, Sakamoto K et al (2004) Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity. Am J Physiol Cell Physiol 287(1):C200–C208. doi: 10.1152/ajpcell.00415.2003 PubMedCrossRefGoogle Scholar
  89. 89.
    Aronson D, Boppart MD, Dufresne SD, Fielding RA, Goodyear LJ (1998) Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem Biophys Res Commun 251(1):106–110. doi: 10.1006/bbrc.1998.9435 PubMedCrossRefGoogle Scholar
  90. 90.
    Wisdom R, Johnson RS, Moore C (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18(1):188–197. doi: 10.1093/emboj/18.1.188 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57(4–5):283–295. doi: 10.1080/15216540500097111 PubMedCrossRefGoogle Scholar
  92. 92.
    Johnson GL, Nakamura K (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773(8):1341–1348. doi: 10.1016/j.bbamcr.2006.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR (2000) Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem 275(2):1457–1462PubMedCrossRefGoogle Scholar
  94. 94.
    Hayashi T, Hirshman MF, Dufresne SD, Goodyear LJ (1999) Skeletal muscle contractile activity in vitro stimulates mitogen-activated protein kinase signaling. Am J Physiol 277(4 Pt 1):C701–C707PubMedGoogle Scholar
  95. 95.
    Yu M, Stepto NK, Chibalin AV, Fryer LG, Carling D, Krook A et al (2003) Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 546(Pt 2):327–335PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547(Pt 3):977–987. doi: 10.1113/jphysiol.2002.036673 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Widegren U, Wretman C, Lionikas A, Hedin G, Henriksson J (2000) Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Arch: Eur J Physiol 441(2–3):317–322CrossRefGoogle Scholar
  98. 98.
    Zhou GX, Meier KE, Buse MG (1993) Sequential activation of two mitogen activated protein (MAP) kinase isoforms in rat skeletal muscle following insulin injection. Biochem Biophys Res Commun 197(2):578–584. doi: 10.1006/bbrc.1993.2518 PubMedCrossRefGoogle Scholar
  99. 99.
    Hei YJ, McNeill JH, Sanghera JS, Diamond J, Bryer-Ash M, Pelech SL (1993) Characterization of insulin-stimulated seryl/threonyl protein kinases in rat skeletal muscle. J Biol Chem 268(18):13203–13213PubMedGoogle Scholar
  100. 100.
    Sherwood DJ, Dufresne SD, Markuns JF, Cheatham B, Moller DE, Aronson D et al (1999) Differential regulation of MAP kinase, p70 (S6K), and Akt by contraction and insulin in rat skeletal muscle. Am J Physiol 276(5 Pt 1):E870–E878PubMedGoogle Scholar
  101. 101.
    Virkamaki A, Ueki K, Kahn CR (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103(7):931–943. doi: 10.1172/JCI6609 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp UR (1994) The ins and outs of Raf kinases. Trends Biochem Sci 19(11):474–480PubMedCrossRefGoogle Scholar
  103. 103.
    Krook A, Widegren U, Jiang XJ, Henriksson J, Wallberg-Henriksson H, Alessi D et al (2000) Effects of exercise on mitogen- and stress-activated kinase signal transduction in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 279(5):R1716–R1721PubMedGoogle Scholar
  104. 104.
    Widegren U, Ryder JW, Zierath JR (2001) Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction. Acta Physiol Scand 172(3):227–238. doi: 10.1046/j.1365-201x.2001.00855.x PubMedCrossRefGoogle Scholar
  105. 105.
    Raney MA, Turcotte LP (2006) Regulation of contraction-induced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle. Am J Physiol Endocrinol Metab 291(6):E1220–E1227. doi: 10.1152/ajpendo.00155.2006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Health Promotion Sciences, Graduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations