Skip to main content

Optimal Monitoring of CML Treatment: Molecular and Mutation Analysis

  • Chapter
Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia
  • 757 Accesses

Abstract

With successful tyrosine kinase inhibitor treatment, the vast majority of chronic myeloid leukaemia patients diagnosed in chronic phase achieve long-term leukaemia-free survival as well as deep molecular responses. Accurate assessment of residual disease by RT-qPCR not only allows patients at risk of treatment failure to be segregated for treatment intensification but also identify patients with deep molecular responses for treatment cessation studies in the future. Specificity, sensitivity and accuracy of the RT-qPCR assay depend on optimised methodology and high-quality specimens with minimal RNA degradation. International standardisation projects allow for RT-qPCR results to be compared across laboratories and in clinical studies. For patients who fail to achieve a desired treatment outcome, mutational analysis allows for optimised selection of subsequent line therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17. doi:10.1056/NEJMoa062867. 355/23/2408 [pii].

    Article  CAS  PubMed  Google Scholar 

  2. Hughes TP, Hochhaus A, Branford S, Muller MC, Kaeda JS, Foroni L, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood. 2010;116(19):3758–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi:10.1182/blood-2013-05-501569.

    Article  CAS  PubMed  Google Scholar 

  4. Ross DM, O’Hely M, Bartley PA, Dang P, Score J, Goyne JM, et al. Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia. 2013;27(10):2105–7. doi:10.1038/leu.2013.116. leu2013116 [pii].

    Article  CAS  PubMed  Google Scholar 

  5. Goldman JM, Melo JV. Chronic myeloid leukemia-advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451–64. doi:10.1056/NEJMra020777. 349/15/1451 [pii].

    Article  CAS  PubMed  Google Scholar 

  6. Branford S, Hughes TP, Rudzki Z. Dual transcription of b2a2 and b3a2 BCR-ABL transcripts in chronic myeloid leukaemia is confined to patients with a linked polymorphism within the BCR gene. Br J Haematol. 2002;117(4):875–7.

    Article  CAS  PubMed  Google Scholar 

  7. Branford S, Cross NCP, Hochhaus A, Radich J, Saglio G, Kaeda J, et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia. 2006;20(11):1925–30.

    Article  CAS  PubMed  Google Scholar 

  8. Muller MC, Merx K, Weisser A, Kreil S, Lahaye T, Hehlmann R, et al. Improvement of molecular monitoring of residual disease in leukemias by bedside RNA stabilization. Leukemia. 2002;16(12):2395–9.

    Article  CAS  PubMed  Google Scholar 

  9. Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999;13(3):133–40. doi:10.1002/(SICI)1098-2825(1999)13:3 < 133::AID-JCLA8 > 3.0.CO;2–0 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, Schram J, et al. Stabilization of mRNA expression in whole blood samples. Clin Chem. 2002;48(11):1883–90.

    CAS  PubMed  Google Scholar 

  11. Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. Optimization of the PAXgene blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal. 2005;19(5):182–8. doi:10.1002/jcla.20075.

    Article  CAS  PubMed  Google Scholar 

  12. Thorn I, Olsson-Stromberg U, Ohlsen C, Jonsson A, Klangby U, Simonsson B, et al. Impact of RNA stabilization on minimal residual disease assessment in chronic myeloid leukemia. Haematologica. 2005;90(11):1350–5.

    Google Scholar 

  13. Kagedal B, Lindqvist M, Farneback M, Lenner L, Peterson C. Failure of the PAXgene blood RNA System to maintain mRNA stability in whole blood. Clin Chem Lab Med. 2005;43(11):1190–2. doi:10.1515/cclm.2005.206.

    Article  PubMed  Google Scholar 

  14. Branford S, Prime J. Chronic myelogenous leukemia: monitoring response to therapy. Curr Hematol Malig Rep. 2011;6(2):75–81. doi:10.1007/s11899-011-0082-1.

    Article  PubMed  Google Scholar 

  15. Branford S, Hughes T. Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol Med. 2006;125:69–92.

    CAS  PubMed  Google Scholar 

  16. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia. 2003;17(12):2474–86.

    Article  CAS  PubMed  Google Scholar 

  17. Stangegaard M, Dufva IH, Dufva M. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA. Biotechniques. 2006;40(5):649–57.

    Article  CAS  PubMed  Google Scholar 

  18. Ross DM, Watkins DB, Hughes TP, Branford S. Reverse transcription with random pentadecamer primers improves the detection limit of a quantitative PCR assay for BCR-ABL transcripts in chronic myeloid leukemia: implications for defining sensitivity in minimal residual disease. Clin Chem. 2008;54(9):1568–71. doi:10.1373/clinchem.2008.105916.

    Article  CAS  PubMed  Google Scholar 

  19. Stanoszek LM, Crawford EL, Blomquist TM, Warns JA, Willey PF, Willey JC. Quality control methods for optimal BCR-ABL1 clinical testing in human whole blood samples. J Mol Diagn. 2013;15(3):391–400. doi:10.1016/j.jmoldx.2013.02.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. White H, Deprez L, Corbisier P, Hall V, Lin F, Mazoua S, et al. A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR. Leukemia. 2015;29(2):369–76. doi:10.1038/leu.2014.217. leu2014217 [pii].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Westgard JO, Barry PL, Hunt MR, Groth T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem. 1981;27(3):493–501.

    CAS  PubMed  Google Scholar 

  22. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29:S49–52.

    PubMed Central  PubMed  Google Scholar 

  23. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Cross NC, White HE, Muller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26(10):2172–5. doi:10.1038/leu.2012.104.

    Article  CAS  PubMed  Google Scholar 

  25. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–34.

    Article  PubMed  Google Scholar 

  26. Mueller MC, Erben P, Saglio G, Gottardi E, Schenk T, Ernst T, et al. Harmonization of BCR-ABL mRNA quantification using an uniform control plasmid in 36 international laboratories. Blood (ASH Annual Meeting Abstracts). 2005;106:1991.

    Google Scholar 

  27. Lion T. Control genes in reverse transcriptase-polymerase chain reaction assays. Leukemia. 1996;10(9):1527–8.

    CAS  PubMed  Google Scholar 

  28. Collins S, Coleman H, Groudine M. Expression of bcr and bcr-abl fusion transcripts in normal and leukaemic cells. Mol Cell Biol. 1987;7:2870.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  30. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  31. Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28(10):1988–92. doi:10.1038/leu.2014.153. leu2014153 [pii].

    Article  CAS  PubMed  Google Scholar 

  32. White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116(22):e111–7. doi:10.1182/blood-2010-06-291641. blood-2010-06-291641 [pii].

    Article  CAS  PubMed  Google Scholar 

  33. White HE, Hedges J, Bendit I, Branford S, Colomer D, Hochhaus A, et al. Establishment and validation of analytical reference panels for the standardization of quantitative BCR-ABL1 measurements on the international scale. Clin Chem. 2013;59(6):938–48. doi:10.1373/clinchem.2012.196477. clinchem.2012.196477 [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Müller MC, Saglio G, Lin F, Pfeifer H, Press RD, Tubbs RR, et al. An international study to standardize the detection and quantitation of BCR-ABL transcripts from stabilized peripheral blood preparations by quantitative RT-PCR. Haematologica. 2007;92(7):970–3.

    Article  PubMed  Google Scholar 

  35. Müller MC, Erben P, Saglio G, Gottardi E, Nyvold CG, Schenk T, et al. Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories. Leukemia. 2008;22(1):96–102.

    Article  PubMed  Google Scholar 

  36. Branford S, Fletcher L, Cross NCP, Muller MC, Hochhaus A, Kim D-W, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–8. doi:10.1182/blood-2008-04-150680.

    Article  CAS  PubMed  Google Scholar 

  37. Muller MC, Cross NCP, Erben P, Schenk T, Hanfstein B, Ernst T, et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23(11):1957–63.

    Article  CAS  PubMed  Google Scholar 

  38. Branford S, Rudzki Z, Parkinson I, Grigg A, Taylor K, Seymour JF, et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood. 2004;104(9):2926–32.

    Article  CAS  PubMed  Google Scholar 

  39. Press RD, Galderisi C, Yang R, Rempfer C, Willis SG, Mauro MJ, et al. A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res. 2007;13(20):6136–43. doi:10.1158/1078-0432.ccr-07-1112.

    Article  CAS  PubMed  Google Scholar 

  40. Marin D, Khorashad JS, Foroni L, Milojkovic D, Szydlo R, Reid AG, et al. Does a rise in the BCR-ABL1 transcript level identify chronic phase CML patients responding to imatinib who have a high risk of cytogenetic relapse? Br J Haematol. 2009;145(3):373–5. doi:10.1111/j.1365-2141.2009.07646.x. BJH7646 [pii].

    Article  CAS  PubMed  Google Scholar 

  41. NCCN Clinical Practice Guidelines in Oncology Chronic Myelogenous Leukemia. Version 2.2014. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site. Accessed 2 Jan 2014.

  42. Yeung DT, Mauro MJ. Prognostic significance of early molecular response in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Hematol Am Soc Hematol Educ Program. 2014;2014(1):240–3.

    Article  Google Scholar 

  43. Branford S, Yeung DT, Parker WT, Roberts ND, Purins L, Braley JA, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124(4):511–8. doi:10.1182/blood-2014-03-566323. blood-2014-03-566323 [pii].

    Article  CAS  PubMed  Google Scholar 

  44. Ross DM, Branford S, Moore S, Hughes TP. Limited clinical value of regular bone marrow cytogenetic analysis in imatinib-treated chronic phase CML patients monitored by RQ-PCR for BCR-ABL. Leukemia. 2006;20(4):664–70.

    Article  CAS  PubMed  Google Scholar 

  45. Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107(3):587–99.

    Article  CAS  PubMed  Google Scholar 

  46. Lauseker M, Hanfstein B, Haferlach C, Schnittger S, Pfirrmann M, Fabarius A, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase. J Cancer Res Clin Oncol. 2014;140(11):1965–9. doi:10.1007/s00432-014-1746-8.

    Article  CAS  PubMed  Google Scholar 

  47. Laneuville P. High risk of error in categorizing treatment response in individual CML patients by standard cytogenetic analysis or PCR assay with high CV: a Bayesian analysis blood. 2012;120(21):Abstract 3776.

    Google Scholar 

  48. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 2011;83(17):6474–84. doi:10.1021/ac103230c.

    Article  CAS  PubMed  Google Scholar 

  49. Goh HG, Lin M, Fukushima T, Saglio G, Kim D, Choi SY, et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma. 2011;52(5):896–904.

    Article  CAS  PubMed  Google Scholar 

  50. Jennings LJ, George D, Czech J, Yu M, Joseph L. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 2014;16(2):174–9. doi:10.1016/j.jmoldx.2013.10.007. S1525-1578(13)00252-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  51. Jobbagy Z, van Atta R, Murphy KM, Eshleman JR, Gocke CD. Evaluation of the Cepheid GeneXpert BCR-ABL assay. J Mol Diagn. 2007;9(2):220–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. O’Dwyer ME, Swords R, Nagler A, McMullin MF, le Coutre PD, Langabeer SE, et al. Nilotinib 300 mg BID as frontline treatment of CML: prospective analysis of the Xpert BCR-ABL monitor system and significance of 3-month molecular response. Leuk Res. 2014;38(3):310–5. doi:10.1016/j.leukres.2013.11.016. S0145-2126(13)00417-7 [pii].

    Article  PubMed  Google Scholar 

  53. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24(10):1719–24. doi:10.1038/leu.2010.185. leu2010185 [pii].

    Article  CAS  PubMed  Google Scholar 

  54. Weerkamp F, Dekking E, Ng YY, van der Velden VH, Wai H, Bottcher S, et al. Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia. 2009;23(6):1106–17. doi:10.1038/leu.2009.93. leu200993 [pii].

    Article  CAS  PubMed  Google Scholar 

  55. Deininger M, O’Brien SG, Guilhot F, Goldman JM, Hochhaus A, Hughes TP, et al. International randomized study of interferon Vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. ASH Annu Meet Abstr. 2009;114(22):Abstract 1126.

    Google Scholar 

  56. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83.

    Article  CAS  PubMed  Google Scholar 

  57. Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20(10):1767–73.

    Article  CAS  PubMed  Google Scholar 

  58. Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120(7):1002–9. doi:10.1002/cncr.28522.

    Article  CAS  PubMed  Google Scholar 

  59. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9. doi:10.1158/1078-0432.ccr-06-1516.

    Article  CAS  PubMed  Google Scholar 

  60. Hochhaus A, Saglio G, Larson RA, Kim D-W, Etienne G, Rosti G, et al. Nilotinib is associated with a reduced incidence of BCR-ABL mutations vs imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood. 2013;121(18):3703–8. doi:10.1182/blood-2012-04-423418.

    Article  CAS  PubMed  Google Scholar 

  61. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2012;119(5):1123–9. doi:10.1182/blood-2011-08-376087. blood-2011-08-376087 [pii].

    Article  CAS  PubMed  Google Scholar 

  62. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15. doi:10.1182/blood-2010-12-326405.

    Article  CAS  PubMed  Google Scholar 

  63. Branford S, Melo JV, Hughes TP. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood. 2009;114(27):5426–35. doi:10.1182/blood-2009-08-215939.

    Article  CAS  PubMed  Google Scholar 

  64. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. doi:10.1056/NEJMoa1306494.

    Article  CAS  PubMed  Google Scholar 

  65. O’Hare T, Eide CA, Deininger MWN. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007;110(7):2242–9. doi:10.1182/blood-2007-03-066936.

    Article  PubMed  Google Scholar 

  66. Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27(3):469–71. doi:10.1200/jco.2008.19.8853.

    Article  CAS  PubMed  Google Scholar 

  67. Alikian M, Gerrard G, Subramanian PG, Mudge K, Foskett P, Khorashad JS, et al. BCR-ABL1 kinase domain mutations: methodology and clinical evaluation. Am J Hematol. 2012;87(3):298–304. doi:10.1002/ajh.22272.

    Article  CAS  PubMed  Google Scholar 

  68. Branford S, Hughes T. Detection of BCR-ABL mutations and resistance to imatinib mesylate. In: Illand H, Hertzgerg M, Marlton P, editors. Myeloid leukemia: methods and protocols, methods in molecular medicine. Totawa: Humana Press; 2006. p. 93–106.

    Google Scholar 

  69. Parker WT, Yeoman AL, Jamison BA, Yeung DT, Scott HS, Hughes TP, et al. BCR-ABL1 kinase domain mutations may persist at very low levels for many years and lead to subsequent TKI resistance. Br J Cancer. 2013;109(6):1593–8. doi:10.1038/bjc.2013.318.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Gruber FXE, Lamark T, Anonli A, Sovershaev MA, Olsen M, Gedde-Dahl T, et al. Selecting and deselecting imatinib-resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL. Leukemia. 2005;19(12):2159–65.

    Article  CAS  PubMed  Google Scholar 

  71. Hanfstein B, Muller MC, Kreil S, Ernst T, Schenk T, Lorentz C, et al. Dynamics of mutant BCR-ABL-positive clones after cessation of tyrosine kinase inhibitor therapy. Haematologica. 2011;96(3):360–6. doi:10.3324/haematol.2010.030999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D, et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood. 2005;106(6):2128–37.

    Article  CAS  PubMed  Google Scholar 

  73. Branford S, Goh H-G, Izzo B, Beppu L, Ortmann C-E, Duniec K, et al. A review of mutation analysis in the TOPS trial of standard dose versus high dose IM in CML suggests that refinements to the ELN recommendations for mutation screening may be appropriate. Blood. 2011;118(21):Abstract 889.

    Google Scholar 

  74. Sherbenou DW, Wong MJ, Humayun A, McGreevey LS, Harrell P, Yang R, et al. Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib. Leukemia. 2007;21(3):489–93.

    Article  CAS  PubMed  Google Scholar 

  75. Press RD, Willis SG, Laudadio J, Mauro MJ, Deininger MW. Determining the rise in BCR-ABL RNA that optimally predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib. Blood. 2009;114(13):2598–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Wang L, Knight K, Lucas C, Clark RE. The role of serial BCR-ABL transcript monitoring in predicting the emergence of BCR-ABL kinase mutations in imatinib-treated patients with chronic myeloid leukemia. Haematologica. 2006;91(2):235–9.

    CAS  PubMed  Google Scholar 

  77. Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia. 2004;18(8):1321–31.

    Article  CAS  PubMed  Google Scholar 

  78. Lahaye T, Riehm B, Berger U, Paschka P, Muller MC, Kreil S, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer. 2005;103(8):1659–69.

    Article  PubMed  Google Scholar 

  79. Ibrahim AR, Eliasson L, Apperley JF, Milojkovic D, Bua M, Szydlo R, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011;117(14):3733–6.

    Article  CAS  PubMed  Google Scholar 

  80. Apperley JF. Part I: Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–29.

    Article  CAS  PubMed  Google Scholar 

  81. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL, et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest. 2007;117(9):2562–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12. doi:10.1016/j.ccr.2009.09.028. S1535-6108(09)00339-0 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  83. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42. doi:10.1016/j.ccr.2014.07.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Khorashad JS, Kelley TW, Szankasi P, Mason CC, Soverini S, Adrian LT, et al. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood. 2013;121(3):489–98. doi:10.1182/blood-2012-05-431379.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Soverini S, De Benedittis C, Machova Polakova K, Brouckova A, Horner D, Iacono M, et al. Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain. Blood. 2013;122(9):1634–48. doi:10.1182/blood-2013-03-487728.

    Article  CAS  PubMed  Google Scholar 

  86. Smith CC, Brown M, Chin J, Kasap C, Salerno S, Damon LE, et al. Single molecule real time (SMRTâ„¢) sequencing sensitively detects polyclonal and compound BCR-ABL in patients who relapse on kinase inhibitor therapy. ASH Annu Meet Abstr. 2011;2011:Abstract 3752.

    Google Scholar 

  87. Parker WT, Phillis SR, Yeung DT, Hughes TP, Scott HS, Branford S. Many BCR-ABL1 compound mutations reported in chronic myeloid leukemia patients may actually be artifacts due to PCR-mediated recombination. Blood. 2014;124(1):153–5. doi:10.1182/blood-2014-05-573485. 124/1/153 [pii].

    Article  CAS  PubMed  Google Scholar 

  88. Khorashad JS, Anand M, Marin D, Saunders S, Al-Jabary T, Iqbal A, et al. The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia. 2006;20:658–63.

    Article  CAS  PubMed  Google Scholar 

  89. Polakova KM, Lopotova T, Klamova H, Moravcova J. High-resolution melt curve analysis: initial screening for mutations in BCR-ABL kinase domain. Leuk Res. 2008;32(8):1236–43.

    Article  CAS  PubMed  Google Scholar 

  90. Roche-Lestienne C, Preudhomme C. Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin Hematol. 2003;40(2 Suppl 2):80–2.

    Article  CAS  PubMed  Google Scholar 

  91. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood. 2002;100(3):1014–8.

    Article  CAS  PubMed  Google Scholar 

  92. Parker WT, Lawrence RM, Ho M, Irwin DL, Scott HS, Hughes TP, et al. Sensitive detection of BCR-ABL1 mutations in patients with chronic myeloid leukemia after imatinib resistance is predictive of outcome during subsequent therapy. J Clin Oncol. 2011;29(32):4250–9. doi:10.1200/JCO.2011.35.0934. JCO.2011.35.0934 [pii].

    Article  CAS  PubMed  Google Scholar 

  93. Li J, Liu W, Yan Z, Fang P, Darwanto A, Pelak K, et al. Next-generation sequencing of the BCR-ABL1 kinase domain and neighboring domains associated with therapy resistance. ASH Annu Meet Abstr. 2012;2012:Abstract 2549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Branford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yeung, D.T., Branford, S. (2016). Optimal Monitoring of CML Treatment: Molecular and Mutation Analysis. In: Kizaki, M. (eds) Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55714-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55714-2_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55713-5

  • Online ISBN: 978-4-431-55714-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics