Skip to main content

Helicobacter pylori VacA Exhibits Pleiotropic Actions in Host Cells

  • Chapter
  • First Online:

Abstract

Helicobacter pylori vacuolating cytotoxin (VacA) is a major virulence factor, with pleiotropic actions on target cells including induction of vacuole formation, mitochondrial dysfunction leading to apoptosis, modulation of signal transduction pathways associated with autophagy, inhibition of T cell proliferation, and production of inflammatory cytokines. Numerous epidemiological studies have indicated that the allelic diversity within four variable regions of the vacA gene might be associated with cell type-specific binding as well as specific clinical outcomes in H. pylori infection. VacA binds to receptors such as receptor protein tyrosine phosphatases (RPTPα and RPTPβ), low-density lipoprotein receptor-related protein-1 (LRP1), fibronectin, CD18, and sphingomyelin to facilitate its action, suggesting the involvement of these receptors in the pathogenesis of H. pylori infection. RPTPβ contributes to ulceration in gastric epithelial cells and LRP1 is involved in the induction of autophagy. Interestingly, it has been suggested that CagA is degraded by VacA-induced autophagy and that the interaction between these two molecules is associated with the pathogenesis of gastric diseases. Therefore, better understanding of the mechanism of VacA toxicity may provide valuable information regarding appropriate medical care for gastroduodenal diseases caused by H. pylori infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Telford JL, Ghiara P, Dell’Orco M, Comanducci M, Burroni D, Bugnoli M, et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med. 1994;179:1653–8.

    Article  CAS  PubMed  Google Scholar 

  2. Atherton JC, Cao P, Peek Jr RM, Tummuru MK, Blaser MJ, Cover TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995;270:17771–7.

    Article  CAS  PubMed  Google Scholar 

  3. Tee W, Lambert JR, Dwyer B. Cytotoxin production by Helicobacter pylori from patients with upper gastrointestinal tract diseases. J Clin Microbiol. 1995;33:1203–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Memon AA, Hussein NR, Miendje Deyi VY, Burette A, Atherton JC. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case–control study. J Clin Microbiol. 2014;52:2984–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leunk RD, Johnson PT, David BC, Kraft WG, Morgan DR. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol. 1988;26:93–9.

    Article  CAS  PubMed  Google Scholar 

  6. Cover TL, Blaser MJ. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem. 1992;267:10570–5.

    CAS  PubMed  Google Scholar 

  7. Cover TL, Tummuru MK, Cao P, Thompson SA, Blaser MJ. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem. 1994;269:10566–73.

    CAS  PubMed  Google Scholar 

  8. de Bernard M, Papini E, de Filippis V, Gottardi E, Telford J, Manetti R, et al. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J Biol Chem. 1995;270:23937–40.

    Article  PubMed  Google Scholar 

  9. Yahiro K, Niidome T, Kimura M, Hatakeyama T, Aoyagi H, Kurazono H, et al. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J Biol Chem. 1999;274:36693–9.

    Article  CAS  PubMed  Google Scholar 

  10. Cover TL, Vaughn SG, Cao P, Blaser MJ. Potentiation of Helicobacter pylori vacuolating toxin activity by nicotine and other weak bases. J Infect Dis. 1992;166:1073–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rassow J. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun Signal. 2011;9:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papini E, Satin B, Bucc C, de Bernard M, Telford JL, Manetti R, et al. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J. 1997;16:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Genisset C, Puhar A, Calore F, de Bernard M, Dell’Antone P, Montecucco C. The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cell Microbiol. 2007;9:1481–90.

    Article  CAS  PubMed  Google Scholar 

  14. Galmiche A, Rassow J, Doye A, Cagnol S, Chambard JC, Contamin S, et al. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 2000;19:6361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimura M, Goto S, Wada A, Yahiro K, Niidome T, Hatakeyama T, et al. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb Pathog. 1999;26:45–52.

    Article  CAS  PubMed  Google Scholar 

  16. Yamasaki E, Wada A, Kumatori A, Nakagawa I, Funao J, Nakayama M, et al. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J Biol Chem. 2006;281:11250–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 2005;3:320–32.

    Article  CAS  PubMed  Google Scholar 

  18. Isomoto H, Moss J, Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. Tohoku J Exp Med. 2010;220:3–14.

    Article  CAS  PubMed  Google Scholar 

  19. Yahiro K, Satoh M, Nakano M, Hisatsune J, Isomoto H, Sap J, et al. Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J Biol Chem. 2012;287:31104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol. 2012;2:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Greenfield LK, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol. 2013;21:602–12.

    Article  CAS  PubMed  Google Scholar 

  22. Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O, Canonici A, et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 2009;5, e1000603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Akada JK, Aoki H, Torigoe Y, Kitagawa T, Kurazono H, Hoshida H, et al. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Dis Model Mech. 2010;3:605–17.

    Article  CAS  PubMed  Google Scholar 

  24. Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 2012;12:764–77.

    Article  CAS  PubMed  Google Scholar 

  25. Fischer W, Buhrdorf R, Gerland E, Haas R. Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect Immun. 2001;69:6769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adrian M, Cover TL, Dubochet J, Heuser JE. Multiple oligomeric states of the Helicobacter pylori vacuolating toxin demonstrated by cryo-electron microscopy. J Mol Biol. 2002;318:121–33.

    Article  CAS  PubMed  Google Scholar 

  27. Cover TL, Hanson PI, Heuser JE. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J Cell Biol. 1997;138:759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Bez C, Adrian M, Dubochet J, Cover TL. High resolution structural analysis of Helicobacter pylori VacA toxin oligomers by cryo-negative staining electron microscopy. J Struct Biol. 2005;151:215–28.

    Article  CAS  PubMed  Google Scholar 

  29. Chambers MG, Pyburn TM, González-Rivera C, Collier SE, Eli I, Yip CK, et al. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol. 2013;425:524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwamoto H, Czajkowsky DM, Cover TL, Szabo G, Shao Z. VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 1999;450:101–4.

    Article  CAS  PubMed  Google Scholar 

  31. Torres VJ, McClain MS, Cover TL. Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J Biol Chem. 2004;279:2324–31.

    Article  CAS  PubMed  Google Scholar 

  32. Torres VJ, McClain MS, Cover TL. Mapping of a domain required for protein-protein interactions and inhibitory activity of a Helicobacter pylori dominant-negative VacA mutant protein. Infect Immun. 2006;74:2093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vinion-Dubiel AD, McClain MS, Czajkowsky DM, Iwamoto H, Ye D, Cao P, et al. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J Biol Chem. 1999;274:37736–42.

    Article  CAS  PubMed  Google Scholar 

  34. McClain MS, Iwamoto H, Cao P, Vinion-Dubiel AD, Li Y, Szabo G, et al. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J Biol Chem. 2003;278:12101–8.

    Article  CAS  PubMed  Google Scholar 

  35. Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 2012;20:165–74.

    Article  CAS  PubMed  Google Scholar 

  36. Torres VJ, Ivie SE, McClain MS, Cover TL. Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin. J Biol Chem. 2005;280:21107–14.

    Article  CAS  PubMed  Google Scholar 

  37. Ivie SE, McClain MS, Torres VJ, Algood HM, Lacy DB, Yang R, et al. Helicobacter pylori VacA subdomain required for intracellular toxin activity and assembly of functional oligomeric complexes. Infect Immun. 2008;76:2843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bridge DR, Merrell DS. Polymorphism in the Helicobacter pylori CagA and VacA toxins and disease. Gut Microbes. 2013;4:101–17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miehlke S, Kirsch C, Agha-Amiri K, Günther T, Lehn N, Malfertheiner P, et al. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int J Cancer. 2000;87:322–7.

    Article  CAS  PubMed  Google Scholar 

  40. Yamaoka Y, Kodama T, Kita M, Imanishi J, Kashima K, Graham DY. Relationship of vacA genotypes of Helicobacter pylori to cagA status, cytotoxin production, and clinical outcome. Helicobacter. 1998;3:241–53.

    Article  CAS  PubMed  Google Scholar 

  41. van Doorn LJ, Figueiredo C, Sanna R, Pena S, Midolo P, Ng EK, et al. Expanding allelic diversity of Helicobacter pylori vacA. J Clin Microbiol. 1998;36:2597–603.

    PubMed  PubMed Central  Google Scholar 

  42. Letley DP, Atherton JC. Natural diversity in the N terminus of the mature vacuolating cytotoxin of Helicobacter pylori determines cytotoxin activity. J Bacteriol. 2000;182:3278–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McClain MS, Cao P, Iwamoto H, Vinion-Dubiel AD, Szabo G, Shao Z, et al. A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation. J Bacteriol. 2001;183:6499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Letley DP, Rhead JL, Twells RJ, Dove B, Atherton JC. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J Biol Chem. 2003;278:26734–41.

    Article  CAS  PubMed  Google Scholar 

  45. Ji X, Fernandez T, Burroni D, Pagliaccia C, Atherton JC, Reyrat J, et al. Cell specificity of Helicobacter pylori cytotoxin is determined by a short region in the polymorphic midregion. Infect Immun. 2000;68:3754–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Skibinski DA, Genisset C, Barone S, Telford JL. The cell-specific phenotype of the polymorphic vacA midregion is independent of the appearance of the cell surface receptor protein tyrosine phosphatase beta. Infect Immun. 2006;74:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pagliaccia C, de Bernard M, Lupetti P, Ji X, Burroni D, Cover TL, et al. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc Natl Acad Sci USA. 1998;95:10212–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Guzman BB, Hisatsune J, Nakayama M, Yahiro K, Wada A, Yamasaki E, et al. Cytotoxicity and recognition of receptor-like protein tyrosine phosphatases, RPTPalpha and RPTPbeta, by Helicobacter pylori m2VacA. Cell Microbiol. 2005;7:1285–93.

    Article  PubMed  CAS  Google Scholar 

  49. Bindayna KM, Al Mahmeed A. vacA genotypes in Helicobacter pylori strains isolated from patients with and without duodenal ulcer in Bahrain. Indian J Gastroenterol. 2009;28:175–9.

    Article  PubMed  Google Scholar 

  50. Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007;133:926–36.

    Article  CAS  PubMed  Google Scholar 

  51. González-Rivera C, Algood HM, Radin JN, McClain MS, Cover TL. The intermediate region of Helicobacter pylori VacA is a determinant of toxin potency in a Jurkat T cell assay. Infect Immun. 2012;80:2578–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ogiwara H, Sugimoto M, Ohno T, Vilaichone RK, Mahachai V, Graham DY, et al. Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases of gastroduodenal diseases. J Clin Microbiol. 2009;47:3493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kidd M, Lastovica AJ, Atherton JC, Louw JA. Heterogeneity in the Helicobacter pylori vacA and cagA genes: association with gastroduodenal disease in South Africa? Gut. 1999;45:499–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Atherton JC, Peek Jr RM, Tham KT, Cover TL, Blaser MJ. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology. 1997;112:92–9.

    Article  CAS  PubMed  Google Scholar 

  55. Shimoyama T, Yoshimura T, Mikami T, Fukuda S, Crabtree JE, Munakata A. Evaluation of Helicobacter pylori vacA genotype in Japanese patients with gastric cancer. J Clin Pathol. 1998;51:299–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol. 1999;37:2274–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008;135:91–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ogiwara H, Graham DY, Yamaoka Y. vacA i-region subtyping. Gastroenterology. 2008;134:1267.

    Article  PubMed  Google Scholar 

  59. Yahiro K, Niidome T, Hatakeyama T, Aoyagi H, Kurazono H, Padilla PI, et al. Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS. Biochem Biophys Res Comm. 1997;238:629–32.

    Article  CAS  PubMed  Google Scholar 

  60. Seto K, Hayashi-Kuwabara Y, Yoneta T, Suda H, Tamaki H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 1998;431:347–50.

    Article  CAS  PubMed  Google Scholar 

  61. Yahiro K, Wada A, Nakayama M, Kimura T, Ogushi K, Niidome T, et al. Protein-tyrosine phosphatase alpha, RPTP alpha, is a Helicobacter pylori VacA receptor. J Biol Chem. 2003;278:19183–9.

    Article  CAS  PubMed  Google Scholar 

  62. de Bernard M, Moschioni M, Papini E, Telford JL, Rappuoli R, Montecucco C. TPA and butyrate increase cell sensitivity to the vacuolating toxin of Helicobacter pylori. FEBS Lett. 1998;436:218–22.

    Article  PubMed  Google Scholar 

  63. Padilla PI, Wada A, Yahiro K, Kimura M, Niidome T, Aoyagi H, et al. Morphologic differentiation of HL-60 cells is associated with appearance of RPTPbeta and induction of Helicobacter pylori VacA sensitivity. J Bio Chem. 2000;275:15200–6.

    Article  CAS  Google Scholar 

  64. McClain MS, Schraw W, Ricci V, Boquet P, Cover TL. Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol Microbiol. 2000;37:433–42.

    Article  CAS  PubMed  Google Scholar 

  65. Fujikawa A, Shirasaka D, Yamamoto S, Ota H, Yahiro K, Fukada M, et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat Genet. 2003;33:375–81.

    Article  CAS  PubMed  Google Scholar 

  66. Utt M, Danielsson B, Wadstrom T. Helicobacter pylori vacuolating cytotoxin binding to a putative cell surface receptor, heparan sulfate, studied by surface plasmon resonance. FEMS Immunol Med Microbiol. 2001;30:109–13.

    Article  CAS  PubMed  Google Scholar 

  67. Hennig EE, Godlewski MM, Butruk E, Ostrowski J. Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. FEMS Immunol Med Microbiol. 2005;44:143–50.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog. 2008;4, e1000073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sewald X, Gebert-Vogl B, Prassl S, Barwig I, Weiss E, Fabbri M, et al. Integrin subunit CD18 is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe. 2008;3:20–9.

    Article  CAS  PubMed  Google Scholar 

  70. Sewald X, Jimenez-Soto L, Haas R. PKC-dependent endocytosis of the Helicobacter pylori vacuolating cytotoxin in primary T lymphocytes. Cell Microbiol. 2011;13:482–96.

    Article  CAS  PubMed  Google Scholar 

  71. Schraw W, Li Y, McClain MS, van der Goot FG, Cover TL. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem. 2002;277:34642–50.

    Article  CAS  PubMed  Google Scholar 

  72. Nakayama M, Hisatsune J, Yamasaki E, Nishi Y, Wada A, Kurazono H, et al. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 cells. Infect Immun. 2006;74:6571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gauthier NC, Monzo P, Kaddai V, Doye A, Ricci V, Boquet P. Helicobacter pylori VacA cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol Biol Cell. 2005;16:4852–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol. 2010;12:1517–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gauthier NC, Monzo P, Gonzalez T, Doye A, Oldani A, Gounon P, et al. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. J Cell Biol. 2007;177:343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Wandinger-Ness A, Goldenring JR, Cover TL. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol Biol Cell. 2004;15:1946–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Molinari M, Galli C, Norais N, Telford JL, Rappuoli R, Luzio JP, et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J Biol Chem. 1997;272:25339–44.

    Article  CAS  PubMed  Google Scholar 

  78. Papini E, de Bernard M, Milia E, Bugnoli M, Zerial M, Rappuoli R, et al. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci USA. 1994;91:9720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikonomov OC, Sbrissa D, Yoshimori T, Cover TL, Shisheva A. PIKfyve Kinase and SKD1 AAA ATPase define distinct endocytic compartments. Only PIKfyve expression inhibits the cell-vacoulating activity of Helicobacter pylori VacA toxin. J Biol Chem. 2002;277:46785–90.

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki J, Ohnsihi H, Shibata H, Wada A, Hirayama T, Iiri T, et al. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori-produced cytotoxin VacA. J Clin Invest. 2001;107:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hotchin NA, Cover TL, Akhtar N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase. J Biol Chem. 2000;275:14009–12.

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki J, Ohnishi H, Wada A, Hirayama T, Ohno H, Ueda N, et al. Involvement of syntaxin 7 in human gastric epithelial cell vacuolation induced by the Helicobacter pylori-produced cytotoxin VacA. J Biol Chem. 2003;278:25585–90.

    Article  CAS  PubMed  Google Scholar 

  83. Papini E, Bugnoli M, de Bernard M, Figura N, Rappuoli R, Montecucco C. Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Mol Microbiol. 1993;7:323–7.

    Article  CAS  PubMed  Google Scholar 

  84. Papini E, Gottardi E, Satin B, de Bernard M, Massari P, Telford J, et al. The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. J Med Microbiol. 1996;45:84–9.

    Article  CAS  PubMed  Google Scholar 

  85. Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, et al. Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy. 2009;5:370–9.

    Article  CAS  PubMed  Google Scholar 

  86. Raju D, Jones NL. Methods to monitor autophagy in H. pylori vacuolating cytotoxin A (VacA)-treated cells. Autophagy. 2010;6:138–43.

    Article  CAS  PubMed  Google Scholar 

  87. Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo-Mata E, et al. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology. 2012;142:1160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, et al. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy. 2012;8:1045–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuck D, Kolmerer B, Iking-Konert C, Krammer PH, Stremmel W, Rudi J. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun. 2001;69:5080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Galmiche A, Rassow J. Targeting of Helicobacter pylori VacA to mitochondria. Gut microbes. 2010;1:392–5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Domanska G, Motz C, Meinecke M, Harsman A, Papatheodorou P, Reljic B, et al. Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane. PLoS Pathog. 2010:6:e1000878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Willhite DC, Blanke SR. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol. 2004;6:143–54.

    Article  CAS  PubMed  Google Scholar 

  93. Foo JH, Culvenor JG, Ferrero RL, Kwok T, Lithgow T, Gabriel K. Both the p33 and p55 subunits of the Helicobacter pylori VacA toxin are targeted to mammalian mitochondria. J Mol Biol. 2010;401:792–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kim JM, Kim JS, Lee JY, Sim YS, Kim YJ, Oh YK, et al. Dual effects of Helicobacter pylori vacuolating cytotoxin on human eosinophil apoptosis in early and late periods of stimulation. Eur J Immunol. 2010;40:1651–62.

    Article  CAS  PubMed  Google Scholar 

  95. Lan CH, Sheng JQ, Fang DC, Meng QZ, Fan LL, Huang ZR. Involvement of VDAC1 and Bcl-2 family of proteins in VacA-induced cytochrome c release and apoptosis of gastric epithelial carcinoma cells. J Dig Dis. 2010;11:43–9.

    Article  CAS  PubMed  Google Scholar 

  96. Calore F, Genisset C, Casellato A, Rossato M, Codolo G, Esposti MD, et al. Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death Differ. 2010;17:1707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsumoto A, Isomoto H, Nakayama M, Hisatsune J, Nishi Y, Nakashima Y, et al. Helicobacter pylori VacA reduces the cellular expression of STAT3 and pro-survival Bcl-2 family proteins, Bcl-2 and Bcl-XL, leading to apoptosis in gastric epithelial cells. Dig Dis Sci. 2011;56:999–1006.

    Article  CAS  PubMed  Google Scholar 

  98. Jain P, Luo ZQ, Blanke SR. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proc Natl Acad Sci USA. 2011;108:16032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Akazawa Y, Isomoto H, Matsushima K, Kanda T, Minami H, Yamaghchi N, et al. Endoplasmic reticulum stress contributes to Helicobacter pylori VacA-induced apoptosis. PLoS One. 2013:8:e82322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Radin JN, Gonzalez-Rivera C, Frick-Cheng AE, Sheng J, Gaddy JA, Rubin DH, et al. Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect Immun. 2014;82:423–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Schmees C, Gerhard M, Treptau T, Voland P, Schwendy S, Rad R, et al. VacA-associated inhibition of T-cell function: reviewed and reconsidered. Helicobacter. 2006;11:144–6.

    Article  CAS  PubMed  Google Scholar 

  102. Molinari M, Salio M, Galli C, Norais N, Rappuoli R, Lanzavecchia A, et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J Exp Med. 1998;187:135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science. 2003;301:1099–102.

    Article  CAS  PubMed  Google Scholar 

  104. Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, et al. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med. 2003;198:1887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim JM, Kim JS, Yoo DY, Ko SH, Kim N, Kim H, et al. Stimulation of dendritic cells with Helicobacter pylori vacuolating cytotoxin negatively regulates their maturation via the restoration of E2F1. Clin Exp Immunol. 2011;166:34–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem. 2004;2798:51715–8.

    Article  CAS  Google Scholar 

  107. Yuan J, Li P, Tao J, Shi X, Hu B, Chen H, et al. H. pylori escape host immunoreaction through inhibiting ILK expression by VacA. Cell Mol Immunol. 2009;6:191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Backert S, Tegtmeyer N. The versatility of the Helicobacter pylori vacuolating cytotoxin vacA in signal transduction and molecular crosstalk. Toxins. 2010;2:69–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, et al. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Bio Chem. 2009;284:1612–9.

    Article  CAS  Google Scholar 

  110. Hisatsune J, Yamasaki E, Nakayama M, Shirasaka D, Kurazono H, Katagata Y, et al. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. Infect Immun. 2007;75:4472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takeshima E, Tomimori K, Takamatsu R, Ishikawa C, Kinjo F, Hirayama T, et al. Helicobacter pylori VacA activates NF-kappaB in T cells via the classical but not alternative pathway. Helicobacter. 2009;14:271–9.

    Article  CAS  PubMed  Google Scholar 

  112. Hisatsune J, Nakayama M, Isomoto H, Kurazono H, Mukaida N, Mukhopadhyay AK, et al. Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol. 2008;180:5017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MN was supported by Takeda Science Foundation. TH and KY were supported by the Cooperative Research Grant of the Institute of Tropical Medicine, Nagasaki University, 2012 and 2014. JM was supported by the Intramural Research Program, National Institutes of Health, and National Heart, Lung, and Blood Institute. KY was also supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Improvement of Research Environment for Young Researchers from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nakano, M., Hirayama, T., Moss, J., Yahiro, K. (2016). Helicobacter pylori VacA Exhibits Pleiotropic Actions in Host Cells. In: Suzuki, H., Warren, R., Marshall, B. (eds) Helicobacter pylori. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55705-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55705-0_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55704-3

  • Online ISBN: 978-4-431-55705-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics