Skip to main content

Immunotherapy for Osteosarcoma

  • Chapter
  • First Online:

Abstract

Osteosarcoma is a highly malignant neoplasm occurring in young persons. The prognosis of nonresponders to chemotherapy is still poor and new treatment modalities are required. We have been working on the development and clinical application of immunotherapy for osteosarcoma since 1998. In this chapter, we describe our studies and discussed the future directions of immunotherapy for osteosarcoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol. 2007;19:341–6.

    Article  CAS  PubMed  Google Scholar 

  2. Southam CM, Marcove RC, Levin AG, Buchsbaum HJ, Mike V. Proceedings: clinical trial of autogenous tumor vaccine for treatment of osteogenic sarcoma. Proc Natl Cancer Conf. 1972;7:91–100.

    CAS  PubMed  Google Scholar 

  3. Nabeta Y, Kawaguchi S, Sahara H, Ikeda H, Hirohashi Y, Goroku T, Sato Y, Tsukahara T, Torigoe T, Wada T, Kaya M, Hiraga H, Isu K, Yamawaki S, Ishii S, Yamashita T, Sato N. Recognition by cellular and humoral autologous immunity in a human osteosarcoma cell line. J Orthop Sci. 2003;8:554–9.

    Article  PubMed  Google Scholar 

  4. Tsukahara T, Nabeta Y, Kawaguchi S, Ikeda H, Sato Y, Shimozawa K, Ida K, Asanuma H, Hirohashi Y, Torigoe T, Hiraga H, Nagoya S, Wada T, Yamashita T, Sato N. Identification of human autologous cytotoxic T-lymphocyte-defined osteosarcoma gene that encodes a transcriptional regulator, papillomavirus binding factor. Cancer Res. 2004;64:5442–8.

    Article  CAS  PubMed  Google Scholar 

  5. Yabe H, Tsukahara T, Kawaguchi S, Wada T, Sato N, Morioka H, Yabe H. Overexpression of papillomavirus binding factor in Ewing’s sarcoma family of tumors conferring poor prognosis. Oncol Rep. 2008;19:129–34.

    PubMed  Google Scholar 

  6. Boeckle S, Pfister H, Steger G. A new cellular factor recognizes E2 binding sites of papillomaviruses which mediate transcriptional repression by E2. Virology. 2002;293:103–17.

    Article  CAS  PubMed  Google Scholar 

  7. Tsukahara T, Kimura S, Ichimiya S, Torigoe T, Kawaguchi S, Wada T, Yamashita T, Sato N. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci. 2009;100:47–53.

    Article  CAS  PubMed  Google Scholar 

  8. Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol Cell Biol. 2005;25:10329–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Minami R, Shimada M, Yokosawa H, Kawahara H. Scythe regulates apoptosis through modulating ubiquitin-mediated proteolysis of the Xenopus elongation factor XEF1AO. Biochem J. 2007;405:495–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Jordanovski D, Herwartz C, Pawlowski A, Taute S, Frommolt P, Steger G. The hypoxia-inducible transcription factor ZNF395 is controlled by IkB kinase-signaling and activates genes involved in the innate immune response and cancer. PLoS One. 2013;8:e74911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hasegawa R, Tomaru Y, de Hoon M, Suzuki H, Hayashizaki Y, Shin JW. Identification of ZNF395 as a novel modulator of adipogenesis. Exp Cell Res. 2013;319:68–76.

    Article  CAS  PubMed  Google Scholar 

  12. Torigoe T, Asanuma H, Nakazawa E, Tamura Y, Hirohashi Y, Yamamoto E, Kanaseki T, Hasegawa T, Sato N. Establishment of a monoclonal anti-pan HLA class I antibody suitable for immunostaining of formalin-fixed tissue: unusually high frequency of down-regulation in breast cancer tissues. Pathol Int. 2012;62:303–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada T, Yamashita T, Sato N. Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci. 2006;97:1374–80.

    Article  CAS  PubMed  Google Scholar 

  14. Tsukahara T, Kawaguchi S, Torigoe T, Murase M, Wada T, Kaya M, Nagoya S, Yamashita T, Sato N. HLA-A*0201-restricted CTL epitope of a novel osteosarcoma antigen, papillomavirus binding factor. J Transl Med. 2009;7:44.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A. 2001;98:10290–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, Imamura M, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, Tsukahara T, Kanaseki T, Sato N, Hirata K. Immunotherapeutic benefit of alpha-interferon (IFNalpha) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci. 2013;104:124–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  CAS  PubMed  Google Scholar 

  19. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996;183:1185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Maki RG, Jungbluth AA, Gnjatic S, Schwartz GK, D’Adamo DR, Keohan ML, Wagner MJ, Scheu K, Chiu R, Ritter E, Kachel J, Lowy I, Old LJ, Ritter G. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma. 2013;2013:168145.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kawaguchi S, Tsukahara T, Ida K, Kimura S, Murase M, Kano M, Emori M, Nagoya S, Kaya M, Torigoe T, Ueda E, Takahashi A, Ishii T, Tatezaki S, Toguchida J, Tsuchiya H, Osanai T, Sugita T, Sugiura H, Ieguchi M, Ihara K, Hamada K, Kakizaki H, Morii T, Yasuda T, Tanizawa T, Ogose A, Yabe H, Yamashita T, Sato N, Wada T. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 2012;103:1625–30.

    Article  CAS  PubMed  Google Scholar 

  23. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  25. Van Der Bruggen P, Stroobant V, Van Pel A, Van den Eynde B. Peptide database: T cell-defined tumor antigens. Cancer Immun. 2013;13:15.

    PubMed Central  PubMed  Google Scholar 

  26. Rosenberg SA. Finding suitable targets is the major obstacle to cancer gene therapy. Cancer Gene Ther. 2014;21:45–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344:641–5.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36:133–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tsukahara T, Kawaguchi S, Ida K, Kimura S, Tamura Y, Ikeda T, Torigoe T, Nagoya S, Wada T, Sato N, Yamashita T. HLA-restricted specific tumor cytolysis by autologous T-lymphocytes infiltrating metastatic bone malignant fibrous histiocytoma of lymph node. J Orthop Res. 2006;24:94–101.

    Article  PubMed  Google Scholar 

  33. Murase M, Kano M, Tsukahara T, Takahashi A, Torigoe T, Kawaguchi S, Kimura S, Wada T, Uchihashi Y, Kondo T, Yamashita T, Sato N. Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer. 2009;101:1425–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kano M, Tsukahara T, Emori M, Murase M, Torigoe T, Kawaguchi S, Wada T, Yamashita T, Sato N. Autologous CTL response against cancer stem-like cells/cancer-initiating cells of bone malignant fibrous histiocytoma. Cancer Sci. 2011;102:1443–7.

    Article  CAS  PubMed  Google Scholar 

  35. Emori M, Tsukahara T, Murase M, Kano M, Murata K, Takahashi A, Kubo T, Asanuma H, Yasuda K, Kochin V, Kaya M, Nagoya S, Nishio J, Iwasaki H, Sonoda T, Hasegawa T, Torigoe T, Wada T, Yamashita T, Sato N. High expression of CD109 antigen regulates the phenotype of cancer stem-like cells/cancer-initiating cells in the novel epithelioid sarcoma cell line ESX and is related to poor prognosis of soft tissue sarcoma. PLoS One. 2013;8:e84187.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hwang SM, Kim MJ, Chang HE, Hong YJ, Kim TS, Song EY, Park KU, Song J, Han KS. Human platelet antigen genotyping and expression of CD109 (human platelet antigen 15) mRNA in various human cell types. Biomed Res Int. 2013;2013:946403.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Tsukahara T, Emori M, Murata K, Hirano T, Muroi N, Kyono M, Toji S, Watanabe K, Torigoe T, Kochin V, Asanuma H, Matsumiya H, Yamashita K, Himi T, Ichimiya S, Wada T, Yamashita T, Hasegawa T, Sato N. Specific targeting of a naturally presented osteosarcoma antigen PBF peptide using an artificial monoclonal antibody. J Biol Chem. 2014;289:22035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohide Tsukahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tsukahara, T., Wada, T. (2016). Immunotherapy for Osteosarcoma. In: Ueda, T., Kawai, A. (eds) Osteosarcoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55696-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55696-1_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55695-4

  • Online ISBN: 978-4-431-55696-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics