Advertisement

Tropical Peat Formation

  • Masayuki Takada
  • Sawahiko Shimada
  • Hidenori Takahashi

Abstract

A summary of the peat formation process, and the classification and characterization of the peatlands in Southeast Asia, particularly those in Kalimantan in Indonesia was undertaken through a review of published studies. Based upon the location, mode of formation, and age of the peat deposits, ombrotrophic and eutrophic peatlands, or topogenous and ombrogenous peatlands are developed by the accumulation of plant debris in coastal and sub-coastal areas, inland areas and high altitude areas. In the areas along the coastline, the youngest peat formation started to occur between 3500 and 6000 years BP in response to the wet conditions generated by rising sea levels at the end of the last glacial period. In comparison, peat in inland peatland areas began to form much earlier, more than 20,000 years BP during the late Pleistocene era. Some tropical peatlands are likely to have been involved in the global carbon cycle before the initiation of boreal and temperate peatlands. One of the characteristics of the peatlands in Southeast Asia is the formation of a convex-shaped dome that formed beyond the extent of river floodwater and under rain-dependent conditions. This is known as ombrogenous peat.

Keywords

Tropical peat Peat formation Classification Dome-shaped peat 

Notes

Acknowledgement

We sincerely thank Ken Koizumi of Nippon Koei Co., Ltd. for providing the elevation model of the tropical peat dome.1

References

  1. Anderson JAR (1961) The ecology and forest types of the peat swamp forests of Sarawak and Brunei in relation to their silviculture. Ph.D. thesis. University of Edinburgh, 117 ppGoogle Scholar
  2. Anderson JAR (1964) The structure and development of the peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16Google Scholar
  3. Anderson JAR (1983) The tropical peat swamps of western Malesia. In: Gore AJP (ed) Ecosystems of the world: mires: swamp, bog, fen and moor 4B, regional studies. Elsevier, New York, pp 181–199Google Scholar
  4. Anderson JAR, Muller J (1975) Palynological study of a Holocene peat and Miocene coal deposit from Northwest Borneo. Rev Palaeobot Palynol 19:291–351CrossRefGoogle Scholar
  5. Andriesse JP (1974) Tropical lowland peats in South-East Asia, Dep. Agriculture Research. R. Tropical Institute 63. Royal Tropical Institute, Department of Agricultural Research, AmsterdamGoogle Scholar
  6. Anshari G, Kershaw AP, van der Kaars S (2001) A late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 171:213–228CrossRefGoogle Scholar
  7. Anshari G, Kershaw AP, van der Kaars S, Jacobsen G (2004) Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J Quat Sci 19:637–655CrossRefGoogle Scholar
  8. Beccari O (1904) Wanderings in the great forests of Borneo (trans: Giglioli EH). LondonGoogle Scholar
  9. Bruenig EF (1968) Der Heidewald von Sarawak und Brunei (The heath forests of Sarawak and Brunei). I. Standort und Vegetation (Site and vegetation). II. Artenbeschreibung und Anhänge (Species descriptions and appendices). Mitt. Bundesforschungsanst. Forst. Holzwirtsch 68Google Scholar
  10. Bruenig EF (1974) Ecological studies in Kerangas forests of Sarawak and Brunei. Borneo Literature Bureau for Sarawak Forest Department, Kuching, 250 ppGoogle Scholar
  11. Bruenig EF (1990) Oligotrophic forested wetlands in Borneo. In: Lugo AE, Brinson M, Brown S (eds) Ecosystems of the world: forested wetlands 15. Elsevier, New York, pp 299–334Google Scholar
  12. Dommain R, Couwenberg J, Joosten H (2010) Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires and Peat 6(5):1–17Google Scholar
  13. Endert FH (1920) De Woudboomftora van Palembang. Tectone 13:113–160Google Scholar
  14. Hueck K (1966) Die Wälder Südamerikas. Fischer, Stuttgart, 422 ppGoogle Scholar
  15. Junk WJ (1983) Ecology of Swamps on the middle Amazon. In: Gore AJP (ed) Ecosystems of the world: mires: swamp, bog, fen and moor 4B, regional studies. Elsevier, New York, pp 269–294Google Scholar
  16. Maltby E, Proctor MCF (1996) Peatlands: their nature and role in the biosphere. In: Lappalainen E (ed) Global peat resources. International Peat Society, Finland, page numbers?Google Scholar
  17. Molengraaff GAF (1900) Borneo expeditie geologische verkenningstochten in centraal Borneo (1893–94) (Borneo expedition geological reconnaissance in central-Borneo (1893–94). Brill, Leiden & Gerlings, AmsterdamGoogle Scholar
  18. Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In: Rieley JO, Page SE (ed) Biodiversity and sustainability of tropical peatlands, Proceedings of the international symposium on Tropical Peatlands. Samara Publishing. Cardigan, UK, pp 55–72Google Scholar
  19. Neuzil SG, Supardi CCB (1993) Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal. In: Cobb JC, Cecil CB (eds) Modern and ancient coal-forming environments. Geological Society of America Special Paper, Boulder, pp 23–44CrossRefGoogle Scholar
  20. Page SE, Rieley JO, Shotyk W, Weiss D (1999) Interdependence of peat and vegetation in a tropical swamp forest. Philos Trans Roy Soc B 354:1885–1897CrossRefGoogle Scholar
  21. Page SE, Wüst RA, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:625–635CrossRefGoogle Scholar
  22. Page SE, Rieley JO, Wüst RAJ (2006) Lowland tropical peatlands of Southeast Asia. Evolution and Records of Environmental and Climate Change, Peatlands, pp 145–172Google Scholar
  23. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  24. Polak B (1933a) Een tocht in het zandsteen gebied bij Mandor (West Borneo). Tropische Natuur 22:23–28Google Scholar
  25. Polak B (1933b) Üeber Torf und Moor in Niederländisch Indien. Verhandelingen Academische Wetenschappen 30:1–85Google Scholar
  26. Polak B (1948) Rawa Labok, an eutrophic topogenous peat deposit in Java. Contributions of the General Agricultural Research Station 85Google Scholar
  27. Potonie H, Koorders SH (1909) Sumpflachmoornatur der moore des produktiven carbons. Jahrbuch 291 der Kgl. Preussichen Geologischen Landesanstalt 30:389–443Google Scholar
  28. Radjagukuk B (1997) Peat soil of Indonesia: location, classification and problems for sustainability. In: Riely JO, Page SE (eds) Biodiversity and sustainability of tropical Peatlands. Samara, Cardigan, pp 45–54Google Scholar
  29. Richards PW (1952) The tropical rain forest. Cambridge University Press, CambridgeGoogle Scholar
  30. Rieley JO, Page SE (2005) Wise use of tropical peatlands: focus on Southeast Asia, Alterra. Wageningen University and Research Centre and the EU INCO – STRAPEAT and RESTORPEAT Partnerships, WageningenGoogle Scholar
  31. Rieley JO, Sieffermann G, Fournier M, Soubies F (1992) The peat swamp forest of Borneo: their origin, development, past and present vegetation and importance in regional and global environmental processes. In: Proceedings of the 9th International Peat Congress 1. Uppsala, pp 78–95Google Scholar
  32. Rieley JO, Page SE, Setiadi B (1996a) Distribution of peatlands in Indonesia. In: Lappalainen E (ed) Global peat resources. International Peat Society, Finland, pp 169–177Google Scholar
  33. Rieley JO, Ahmad-Shah AA, Brady MA (1996b) The extent and nature of tropical peat swamps. In: Maltby E, Immirzi CP, Safford RJ (eds) Tropical lowland Peatlands of Southeast Asia. IUCN, Gland, pp 17–53Google Scholar
  34. Rieley JO, Wüst RAJ, Jauhiainen J, Page SE, Wösten H, Hooijer A, Siegert F, Limin SH, Vasander H, Stahlhut M (2008) Tropical peatlands: carbon stores, carbon gas emission and contribution to climate change processes. In: Strack M (ed) Peatlands and climate change. International Peat Society, Finland, pp 148–181Google Scholar
  35. Sieffermann RG, Fournier M, Triutomo S, Sadelman MT, Semah AM (1988) Velocity of tropical forest peat accumulation in Central Kalimantan Province, Indonesia (Borneo). In: Proceedings of the 8th International Peat Congress. International Peat Society, Leningrad, pp 90–98Google Scholar
  36. Soepraptohardjo M, Driessen PM (1976) The lowland peat of Indonesia, a challenge for the future, Soil Research Inst. Bull 3. Soil Research Institute, BogorGoogle Scholar
  37. Staub JR, Esterle JS (1994) Peat-accumulating depositional systems of Sarawak, East Malaysia. Sediment Geol 89:91–106CrossRefGoogle Scholar
  38. Subagjo, Driessen PM (1972) The ombrogenous peat soils of Indonesia. Soil Research Institute, Bogor, pp 193–205Google Scholar
  39. Tenison-Woods JE (1885) The Borneo coalfields. Nature 583–584Google Scholar
  40. van Steenis CGGJ (1958) Commentary on the vegetation map of Malaysia. UNESCO, New YorkGoogle Scholar
  41. Wilford GE (1962) The geology and mineral resources of Brunei and adjacent parts of Sarawak. British Borneo Geological Survey Memoir 10, Geological Survey, Borneo Region, Malaysia. 319 ppGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Masayuki Takada
    • 1
  • Sawahiko Shimada
    • 2
  • Hidenori Takahashi
    • 3
  1. 1.Faculty of Humanity and EnvironmentHosei UniversityChiyoda-kuJapan
  2. 2.Faculty of Regional Environment ScienceTokyo University of AgricultureTokyoJapan
  3. 3.Hokkaido Institute of Hydro-climateSapporo CityJapan

Personalised recommendations