Advertisement

Land Change Analysis from 2000 to 2004 in Peatland of Central Kalimantan, Indonesia Using GIS and an Extended Transition Matrix

  • Yan Gao
  • Robert Gilmore PontiusJr.
  • Nicholas M. Giner
  • Takashi S. Kohyama
  • Mitsuru Osaki
  • Kazuyo Hirose

Abstract

This chapter analyzes the land cover transitions for a tropical peatland in Central Kalimantan, Indonesia. We constructed a transition matrix using land cover maps derived from classified Landsat images obtained from the years 2000 to 2004, and analyzed the transitions among Forest, Bare land, and Grass land. The results give insights of interpretations of land cover transitions and intensity analysis. Forest is involved in most of the changes; however, it is the only dormant category. The systematically avoiding transitions were from Forest to Bare land and from Bare land to Forest, in spite of the fact that the largest transition was from Forest to Bare Land. The systematically targeting transitions were from Bare land to Grass land and from Grass land to Bare land. In order to develop a deeper understanding of land cover transition, it is recommended to combine this method of analyzing the patterns of change with other types of research concerning the processes of change.

Keywords

Deforestation Transition matrix Central Kalimantan 

Notes

Acknowledgments

Results shown in this paper were mainly obtained from SATREPS (Science and Technology Research Partnership for Sustainable Development) project entitled as “Wild fire and carbon management in peat-forest in Indonesia” founded by JST (Japan Science and Technology Agency) and JICA (Japan International Cooperation Agency).

References

  1. Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002CrossRefGoogle Scholar
  2. Aldwaik SZ, Pontius RG Jr (2012) Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc Urban Plan 106:103–114CrossRefGoogle Scholar
  3. Alo CA, Pontius RG Jr (2008) Identifying systematic land-cover transitions using remote sensing and GIS: the fate of forests inside and outside protected areas of Southwestern Ghana. Environ Plan B 35(2):280–295CrossRefGoogle Scholar
  4. Alves DS, Pereira JL, De Sousa CL, Soares JV, Tamaguchi F (1999) Characterizing landscape change in Central Rondonia using Landsat TM imagery. Int J Remote Sens 20:2877–2882CrossRefGoogle Scholar
  5. Barber CV, Schweithelm J (2000) Trial by fire-forest fire and forestry policy in Indonesia’s era of crisis and reform. World Resources Institute, Washington, DC, pp 6–11Google Scholar
  6. Currit N (2005) Development of remotely sensed, historical land cover change database for rural Chihuahua, Mexico. Int J Appl Earth Obs Geoinf 7:232–247CrossRefGoogle Scholar
  7. Dennis RA, Colfer C (2006) Impacts of land use and fire on the loss and degradation of lowland forest in 1983–2000 in East Kutai District, East Kalimantan, Indonesia. Singap J Trop Geogr 27:30–48CrossRefGoogle Scholar
  8. Eiden G, Vidal C, Georgieva N (2002) In: Gallego J (ed) Building agro-environmental indicators-focusing on the European area frame survey LUCAS, vol 1. European Commission, Ispra, pp 55–74, Chapter 4Google Scholar
  9. Fuller DO (2006) Tropical forest monitoring and remote sensing: a new era of transparency in forest governance? Singap J Trop Geogr 27:15–29CrossRefGoogle Scholar
  10. Fuller DO, Jessup TC, Salim A (2004) Loss of forest cover in Kalimantan, Indonesia, since the 1997–1998 El Nino. Conserv Biol 18:249–254CrossRefGoogle Scholar
  11. Guild LS, Cohen WB, Kauffman JB (2004) Detection of deforestation and land conversion in Rondonia, Brazil using change detection techniques. Int J Remote Sens 25:731–750CrossRefGoogle Scholar
  12. Hecker JH (2005) Promoting environmental security and poverty alleviation in the peat swamps of Central Kalimantan, Indonesia. Institute for Environmental Security, The Hague, pp 10–11, Version 1Google Scholar
  13. Hirano T, Segah H, Harada T, Limin S, June T, Hirata R, Osaki M (2007) Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Chang Biol 13:412–425CrossRefGoogle Scholar
  14. Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M (2012) Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob Chang Biol 18:3410–3422CrossRefGoogle Scholar
  15. Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci U S A 108:5127–5132CrossRefGoogle Scholar
  16. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241CrossRefGoogle Scholar
  17. Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob Chang Biol 13:2329–2340CrossRefGoogle Scholar
  18. Lo CP, Yang XJ (2002) Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia Metropolitan Area. Photogramm Eng Remote Sens 68:1073–1082Google Scholar
  19. Manandhar R, Odeh IOA, Pontius RG Jr (2010) Analysis of twenty years of categorical land transitions in the lower Hunter of New South Wales, Australia. Agric Ecosyst Environ 135:336–346CrossRefGoogle Scholar
  20. Miettinen J, Shi CG, Liew SC (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Chang Biol 17:2261–2270CrossRefGoogle Scholar
  21. Mirmanto E (2010) Vegetation analyses of Sebangau peat swamp forest, Central Kalimantan. Biodiversity 11:82–88CrossRefGoogle Scholar
  22. Mundia CN, Aniya M (2005) Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. Int J Remote Sens 26:2831–2849CrossRefGoogle Scholar
  23. Nuri ASM, Gandaseca S, Ahmed OH, Majid NMA (2011) Effect of tropical peat swamp forest clearing on soil carbon storage. Am J Agric Biol Sci 6(1):80–83CrossRefGoogle Scholar
  24. Osaki M, Hirano T, Inoue G, Honma T, Takahashi H, Takeuchi W, Kobayashi N, Evri M, Kohyama T, Ito A, Setiadi B, Sekine H, Hirose K (2010) In: Shin-ichi N et al (eds) The biodiversity observation network in the Asia-Pacific region: toward further development of monitoring. Springer, Japan, p 350, Chapter 2Google Scholar
  25. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65CrossRefGoogle Scholar
  26. Pérez-Hugalde C, Romero-Calcerrada R, Delgado-Pérez P, Novillo CJ (2011) Understanding land cover change in a special protection area in Central Spain through the enhanced land cover transition matrix and a related new approach. J Environ Manag 92:1128–1137CrossRefGoogle Scholar
  27. Pontius RG Jr, Shusas E, Mceachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 100:251–268CrossRefGoogle Scholar
  28. Ramankutty N, Graumlich L, Achard F, Alves D, Chhabra A, DeFries RS, Foley JA, Geist H, Houghton RA, Goldewijk KK, Lambin EF, Millington A, Rasmussen K, Reid RS, Turner BL (2006) In: Lambin EF, Geist HJ (eds) land-use and land-cover change: local process and global impacts. Springer, BerlinGoogle Scholar
  29. Rogan J, Chen D (2004) Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog Plan 61:301–325CrossRefGoogle Scholar
  30. Romero-Ruiz MH, Flantua SGA, Tansey K, Berrio JC (2011) Landscape transitions in savannas of northern South America: land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl Geogr 32:766–776CrossRefGoogle Scholar
  31. Siegert F, Zhukov B, Oertel D, Limin S, Page SE, Rieley JO (2004) Peat fires detected by the BIRD satellite. Int J Remote Sens 25:3221–3230CrossRefGoogle Scholar
  32. Sorensen KW (1993) Indonesian peat swamp forests and their role as a carbon sink. Chemosphere 27:1065–1082CrossRefGoogle Scholar
  33. Vasconcelos MJP, Mussabiai JC, Araujo A, Diniz MA (2002) Land cover change in two protected areas of Guinea-Bissau (1956–1998). Appl Geogr 22:139–156CrossRefGoogle Scholar
  34. Villamor GB, Pontius RG Jr, Van Noordwijk M (2014) Agroforest’s growing role in carbon losses from Jambi (Sumatra), Indonesia. Reg Environ Chang 14(2):825–834CrossRefGoogle Scholar
  35. Wardell DA, Reenberg A, Tottrup C (2003) Historical footprints in contemporary land use systems: forest cover changes in savannah woodlands in the Sudano-Sahelian zone. Glob Environ Chang 13:235–254CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yan Gao
    • 1
  • Robert Gilmore PontiusJr.
    • 2
  • Nicholas M. Giner
    • 2
  • Takashi S. Kohyama
    • 3
  • Mitsuru Osaki
    • 4
  • Kazuyo Hirose
    • 5
  1. 1.Universidad Nacional Autonoma de MexicoMexico CityMexico
  2. 2.Graduate School of GeographyClark UniversityWorcesterUSA
  3. 3.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  4. 4.Research Faculty of AgricultureHokkaido University N9W9SapporoJapan
  5. 5.Japan Space SystemsTokyoJapan

Personalised recommendations