Skip to main content

Therapeutic Approach of iPS Cell Technology for Treating Muscular Dystrophy

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy
  • 633 Accesses

Abstract

Most genetic disorders of skeletal muscle do not have curative treatment and are limited to palliative care that fails to curb progression. Additionally, for many myopathies, the pathology remains unclear, although the causative genes have been identified. Thus, research attempts are underway to develop new treatments for these intractable myopathies, including those based on induced pluripotent stem (iPS) cells. In general, iPS cell strategies can be divided into two groups: those focused on cell transplant therapies in the hope of finding a curative treatment and those seeking to elucidate the underlying pathology to develop effective drugs.

The transplantation of muscle progenitor cells derived from mouse iPS cells promotes muscle regeneration in a muscular dystrophy mouse model and restores muscle strength. Similarly, research using human iPS cells has led to several methods for inducing muscle engraftable progenitors. Though reports on pathology studies using patient-derived iPS cells are few, they have shown successful recapitulation of the disease. Here I explain how the induction of differentiation of human iPS cells into muscle cells with exceptional efficiency and high reproducibility will boost drug development and therapeutic efforts along with providing detailed understanding of myopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  3. Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334

    Article  CAS  PubMed  Google Scholar 

  4. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 107(28):12704–12709. doi:10.1073/pnas.09101061070910106107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  CAS  PubMed  Google Scholar 

  6. Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134(1):37–47. doi:10.1016/j.cell.2008.05.049S0092-8674(08)00755-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  8. Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10(12):915–929. doi:10.1038/nrd3577nrd3577

    CAS  PubMed  Google Scholar 

  9. van Deutekom JC, Bremmer-Bout M, Janson AA, Ginjaar IB, Baas F, den Dunnen JT, van Ommen GJ (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 10(15):1547–1554

    Article  PubMed  Google Scholar 

  10. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 80(15):4856–4860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Delaporte C, Dautreaux B, Rouche A, Fardeau M (1990) Changes in surface morphology and basal lamina of cultured muscle cells from Duchenne muscular dystrophy patients. J Neurol Sci 95(1):77–88

    Article  CAS  PubMed  Google Scholar 

  12. Delaporte C, Dehaupas M, Fardeau M (1984) Comparison between the growth pattern of cell cultures from normal and Duchenne dystrophy muscle. J Neurol Sci 64(2):149–160

    Article  CAS  PubMed  Google Scholar 

  13. Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10(2):113–120, doi:S0960896699000930

    Article  CAS  PubMed  Google Scholar 

  14. Webster C, Blau HM (1990) Accelerated age–related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16(6):557–565

    Article  CAS  PubMed  Google Scholar 

  15. Hirata S, Takayama N, Jono-Ohnishi R, Endo H, Nakamura S, Dohda T, Nishi M, Hamazaki Y, Ishii E, Kaneko S, Otsu M, Nakauchi H, Kunishima S, Eto K (2013) Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 123(9):3802–3814. doi:10.1172/JCI6472164721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12(4):487–496. doi:10.1016/j.stem.2013.01.009S1934-5909(13)00012-X

    Article  CAS  PubMed  Google Scholar 

  17. Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15(6):690–695. doi:10.1038/nm.1956nm.1956

    Article  CAS  PubMed  Google Scholar 

  18. Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134–143. doi:10.1038/nm1705nm1705

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai H, Era T, Jakt LM, Okada M, Nakai S, Nishikawa S (2006) In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24(3):575–586, doi:2005–0256

    Article  CAS  PubMed  Google Scholar 

  20. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–995. doi:10.1038/nature03594

    Article  CAS  PubMed  Google Scholar 

  21. Sakurai H, Okawa Y, Inami Y, Nishio N, Isobe K (2008) Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 26(7):1865–1873. doi:10.1634/stemcells.2008-01732008-0173

    Article  CAS  PubMed  Google Scholar 

  22. Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, Fukada S, Yamamoto H, Motohashi N, Miyagoe-Suzuki Y, Takeda S, Heike T, Nakahata T (2009) Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. Faseb J 23(6):1907–1919. doi:10.1096/fj.08-123661fj.08-123661

    Article  CAS  PubMed  Google Scholar 

  23. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296(2):245–255. doi:10.1016/j.yexcr.2004.02.018S0014482704000886

    Article  CAS  PubMed  Google Scholar 

  24. Darabi R, Santos FN, Filareto A, Pan W, Koene R, Rudnicki MA, Kyba M, Perlingeiro RC (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29(5):777–790. doi:10.1002/stem.625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T, Fukada S, Yamamoto H, Yamanaka S, Nakahata T, Heike T (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. Faseb J 24(7):2245–2253. doi:10.1096/fj.09-137174fj.09-137174

    Article  CAS  PubMed  Google Scholar 

  26. Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RC (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev 7(4):948–957. doi:10.1007/s12015-011-9258-2

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A (2012) In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 7(10), e47078. doi:10.1371/journal.pone.0047078PONE-D-12-02501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, Oshimura M (2010) Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 18(2)):386–393. doi:10.1038/mt.2009.274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13(5):642–648

    Article  CAS  PubMed  Google Scholar 

  30. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    Article  CAS  PubMed  Google Scholar 

  31. Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M (2010) Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF–beta/activin/nodal signaling using SB-431542. J Bone Miner Res 25(6):1216–1233. doi:10.1002/jbmr.34

    Article  CAS  PubMed  Google Scholar 

  32. Ryan T, Liu J, Chu A, Wang L, Blais A, Skerjanc IS (2012) Retinoic acid enhances skeletal myogenesis in human embryonic stem cells by expanding the premyogenic progenitor population. Stem Cell Rev 8(2):482–493. doi:10.1007/s12015-011-9284-0

    Article  CAS  PubMed  Google Scholar 

  33. Awaya T, Kato T, Mizuno Y, Chang H, Niwa A, Umeda K, Nakahata T, Heike T (2012) Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 7(12), e51638. doi:10.1371/journal.pone.0051638PONE-D-12-18790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES– and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. doi:10.1016/j.stem.2012.02.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra189. doi:10.1126/scitranslmed.30035414/140/140ra89

    Article  Google Scholar 

  36. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  37. Goudenege S, Lebel C, Huot NB, Dufour C, Fujii I, Gekas J, Rousseau J, Tremblay JP (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 20(11):2153–2167. doi:10.1038/mt.2012.188mt2012188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR, Wagers AJ, Zon LI (2013) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155(4):909–921. doi:10.1016/j.cell.2013.10.023S0092-8674(13)01299-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T, Nishino T, Shoji E, Sehara-Fujisawa A, Manabe Y, Fujii N, Hanaoka K, Era T, Yamashita S, Isobe K, Kimura E, Sakurai H (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi myopathy in vitro. PLoS One 8(4), e61540. doi:10.1371/journal.pone.0061540PONE-D-12-35707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Miyoshi K, Kawai H, Iwasa M, Kusaka K, Nishino H (1986) Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain 109(Pt 1):31–54

    Article  PubMed  Google Scholar 

  41. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36. doi:10.1038/1682

    Article  CAS  PubMed  Google Scholar 

  42. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168–172. doi:10.1038/nature01573nature01573

    Article  CAS  PubMed  Google Scholar 

  43. Han R (2011) Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle 1(1):10. doi:10.1186/2044-5040-1-102044-5040-1-10

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hoffman EP, Knudson CM, Campbell KP, Kunkel LM (1987) Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature 330(6150):754–758. doi:10.1038/330754a0

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928. doi:10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  46. Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5(9):872–876. doi:10.1038/sj.embor.7400221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605. doi:10.1016/S0140-6736(11)60756-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Constantin B, Sebille S, Cognard C (2006) New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J Muscle Res Cell Motil 27(5–7):375–386. doi:10.1007/s10974-006-9085-2

    Article  CAS  PubMed  Google Scholar 

  49. Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276(7):4647–4651. doi:10.1074/jbc.M006337200M006337200

    Article  CAS  PubMed  Google Scholar 

  50. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, Weinstein M, Gardner KL, Rafael-Fortney JA, Karin M, Tidball JG, Baldwin AS, Guttridge DC (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117(4):889–901. doi:10.1172/JCI30556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18(5):824–834. doi:10.1093/hmg/ddn408

    CAS  PubMed  Google Scholar 

  52. Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106(45):19023–19028. doi:10.1073/pnas.0906591106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Shoji E, Sakurai H, Nishino T, Nakahata T, Heike T, Awaya T, Fujii N, Manabe Y, Matsuo M, Sehara-Fujisawa A (2015) Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Sci Rep 5:Article 12831. doi: 10.1038/srep12831

  54. Tawil R, Van Der Maarel SM (2006) Facioscapulohumeral muscular dystrophy. Muscle Nerve 34(1):1–15. doi:10.1002/mus.20522

    Article  CAS  PubMed  Google Scholar 

  55. Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R et al (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30. doi:10.1038/ng0992-26

    Article  CAS  PubMed  Google Scholar 

  56. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, Tawil R, Frants RR, van der Maarel SM (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329(5999):1650–1653. doi:10.1126/science.1189044science.1189044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6(10), e1001181. doi:10.1371/journal.pgen.1001181

    Article  PubMed Central  PubMed  Google Scholar 

  58. Turner C, Hilton-Jones D (2014) Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol 27(5):599–606. doi:10.1097/WCO.0000000000000128

    Article  PubMed  Google Scholar 

  59. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69(2):385

    Article  CAS  PubMed  Google Scholar 

  60. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255(5049):1253–1255

    Article  CAS  PubMed  Google Scholar 

  61. Lopez Castel A, Nakamori M, Tome S, Chitayat D, Gourdon G, Thornton CA, Pearson CE (2011) Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 20(1):1–15. doi:10.1093/hmg/ddq427ddq427

    Article  PubMed Central  PubMed  Google Scholar 

  62. Osborne RJ, Lin X, Welle S, Sobczak K, O’Rourke JR, Swanson MS, Thornton CA (2009) Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum Mol Genet 18(8):1471–1481. doi:10.1093/hmg/ddp058ddp058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277. doi:10.1146/annurev.neuro.29.051605.113014

    Article  CAS  PubMed  Google Scholar 

  64. Ashizawa T, Anvret M, Baiget M, Barcelo JM, Brunner H, Cobo AM, Dallapiccola B, Fenwick RG Jr, Grandell U, Harley H et al (1994) Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 54(3):414–423

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM (2013) Length-dependent CTG.CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum Mol Genet 22(25):5276–5287. doi:10.1093/hmg/ddt386ddt386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sakurai, H. (2016). Therapeutic Approach of iPS Cell Technology for Treating Muscular Dystrophy. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics