Skip to main content

Translational Research in Nucleic Acid Therapies for Muscular Dystrophies

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

Nucleic acid therapies have gained significant traction in recent years as a promising new approach to treating various genetic diseases. Such therapies employ synthetic, small molecules called antisense oligonucleotides (AOs) which are capable of modulating the transfer of genetic information from nucleic acid to protein through various mechanisms, including the augmentation of pre-mRNA splicing and downregulation of expression. Thus, AOs can prevent the incorporation of genetic mutations causing disease into final protein transcripts as well as reduce levels of mutant transcripts, potentially ameliorating disease phenotype. This process, also known as antisense therapy, has recently been the subject of several preclinical and clinical trials aimed at treating muscular dystrophies. Thanks to recent advancements in antisense drug chemistries, numerous studies have demonstrated the safety, tolerability, and efficacy of AOs administered to patients with Duchenne muscular dystrophy, the most common form of muscular dystrophy. In the wake of promising clinical trial data, it may well be that the first federally approved marketable antisense drug for treating muscular dystrophy could be on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helene C, Toulme JJ (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1049(2):99–125

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. doi:10.3390/jpm3030144#sthash.EzKjmG9w.dpuf

    Article  PubMed Central  PubMed  Google Scholar 

  3. Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. doi:10.1517/14712598.2014.896335

    Article  CAS  PubMed  Google Scholar 

  4. Spiegelman WG, Reichardt LF, Yaniv M, Heinemann SF, Kaiser AD, Eisen H (1972) Bidirectional transcription and the regulation of Phage lambda repressor synthesis. Proc Natl Acad Sci U S A 69(11):3156–3160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Annu Rev Biochem 55:569–597. doi:10.1146/annurev.bi.55.070186.003033

    Article  CAS  PubMed  Google Scholar 

  6. Itoh T, Tomizawa J (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A 77(5):2450–2454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22:567–600. doi:10.1146/annurev.ge.22.120188.003031

    Article  CAS  PubMed  Google Scholar 

  8. Tomizawa J, Itoh T, Selzer G, Som T (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci U S A 78(3):1421–1425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Light J, Molin S (1983) Post-transcriptional control of expression of the repA gene of plasmid R1 mediated by a small RNA molecule. EMBO J 2(1):93–98

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (microRNA). Proc Natl Acad Sci U S A 81(7):1966–1970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34(2):683–691

    Article  CAS  PubMed  Google Scholar 

  12. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75(1):280–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Izant JG, Weintraub H (1985) Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science 229(4711):345–352

    Article  CAS  PubMed  Google Scholar 

  14. McGarry TJ, Lindquist S (1986) Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc Natl Acad Sci U S A 83(2):399–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yokota T, Takeda S, Lu QL, Partridge TA, Nakamura A, Hoffman EP (2009) A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 66(1):32–38

    Article  PubMed Central  PubMed  Google Scholar 

  16. Miller PS, Braiterman LT, Ts’o PO (1977) Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry 16(9):1988–1996

    Article  CAS  PubMed  Google Scholar 

  17. Bendifallah N, Rasmussen FW, Zachar V, Ebbesen P, Nielsen PE, Koppelhus U (2006) Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjug Chem 17(3):750–758. doi:10.1021/bc050283q

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman EP, Bronson A, Levin AA, Takeda S, Yokota T, Baudy AR, Connor EM (2011) Restoring dystrophin expression in Duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol 179(1):12–22. doi:10.1016/j.ajpath.2011.03.050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. doi:10.1038/ni1112

    Article  CAS  PubMed  Google Scholar 

  20. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6(3):686–695. doi:10.1021/mp900093r

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T (2011) The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Mol Ther 19(1):9–15. doi:10.1038/mt.2010.219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Moulton JD, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14(3):1304–1323. doi:10.3390/molecules14031304

    Article  CAS  PubMed  Google Scholar 

  23. Sazani P, Ness KP, Weller DL, Poage D, Nelson K, Shrewsbury AS (2011) Chemical and mechanistic toxicology evaluation of exon skipping phosphorodiamidate morpholino oligomers in mdx mice. Int J Toxicol 30(3):322–333. doi:10.1177/1091581811403504

    Article  CAS  PubMed  Google Scholar 

  24. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605. doi:10.1016/S0140-6736(11)60756-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Heemskerk H, de Winter C, van Kuik P, Heuvelmans N, Sabatelli P, Rimessi P, Braghetta P, van Ommen GJ, de Kimpe S, Ferlini A, Aartsma-Rus A, van Deutekom JC (2010) Preclinical PK and PD studies on 2′-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 18(6):1210–1217. doi:10.1038/mt.2010.72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA, Sitsen JM, Aartsma-Rus A, van Ommen GJ, Buyse G, Darin N, Verschuuren JJ, Campion GV, de Kimpe SJ, van Deutekom JC (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364(16):1513–1522. doi:10.1056/NEJMoa1011367

    Article  CAS  PubMed  Google Scholar 

  27. Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, Duguez SM, Nagaraju K, Hoffman EP, Partridge T, Takeda S (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. doi:10.1073/pnas.1204638109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, Kuga A, Kurahashi H, Akman HO, DiMauro S, Kaji R, Yokota T, Takeda S, Toda T (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478(7367):127–131. doi:10.1038/nature10456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yokota T, Nakamura A, Nagata T, Saito T, Kobayashi M, Aoki Y, Echigoya Y, Partridge T, Hoffman EP, Takeda S (2012) Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 22(5):306–315. doi:10.1089/nat.2012.0368

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Prakash TP, Bhat B (2007) 2′-Modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7(7):641–649

    Article  CAS  PubMed  Google Scholar 

  31. Altmann KH, Fabbro D, Dean NM, Geiger T, Monia BP, Muller M, Nicklin P (1996) Second-generation antisense oligonucleotides: structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem Soc Trans 24(3):630–637

    Article  CAS  PubMed  Google Scholar 

  32. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM (1993) Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268(19):14514–14522

    CAS  PubMed  Google Scholar 

  33. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, Krainer AR (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478(7367):123–126. doi:10.1038/nature10485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Aartsma-Rus A, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ, van Deutekom JC (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12(Suppl 1):S71–77

    Article  PubMed  Google Scholar 

  35. Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68. doi:10.1089/nat.2013.0451

    Article  CAS  PubMed  Google Scholar 

  36. Yokota T, Duddy W, Echigoya Y, Kolski H (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12(9):1141–1152. doi:10.1517/14712598.2012.693469

    Article  CAS  PubMed  Google Scholar 

  37. Aoki Y, Yokota T, Wood MJ (2013) Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. Biomed Res Int 2013:402369. doi:10.1155/2013/402369

    Article  PubMed Central  PubMed  Google Scholar 

  38. Yokota T, Duddy W, Partridge T (2007) Optimizing exon skipping therapies for DMD. Acta Myol 26(3):179–184

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Pramono ZA, Takeshima Y, Alimsardjono H, Ishii A, Takeda S, Matsuo M (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226(2):445–449

    Article  CAS  PubMed  Google Scholar 

  40. Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, Morgan JE, Partridge TA, Wilton SD (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A 98(1):42–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. doi:10.1002/ana.21627

    Article  PubMed  Google Scholar 

  43. Yokota T, Hoffman E, Takeda S (2011) Antisense oligo-mediated multiple exon skipping in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 709:299–312. doi:10.1007/978-1-61737-982-6_20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. McCarter GC, Steinhardt RA (2000) Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures. J Membr Biol 176(2):169–174

    Article  CAS  PubMed  Google Scholar 

  45. Kamoshita S, Konishi Y, Segawa M, Fukuyama Y (1976) Congenital muscular dystrophy as a disease of the central nervous system. Arch Neurol 33(7):513–516

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394(6691):388–392. doi:10.1038/28653

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I, Arahata K (2001) Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57(1):115–121

    Article  CAS  PubMed  Google Scholar 

  48. Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI, Somer H, Straub V, Mathews KD, Moore SA, Campbell KP (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418(6896):417–422. doi:10.1038/nature00837

    Article  CAS  PubMed  Google Scholar 

  49. Guglieri M, Bushby K (2008) How to go about diagnosing and managing the limb-girdle muscular dystrophies. Neurol India 56(3):271–280

    Article  PubMed  Google Scholar 

  50. Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-Garcia R, Palmer J, Gallano P, Baiget M, Matsuda C, Brown RH (2001) Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol 49(1):130–134

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36. doi:10.1038/1682

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda C, Aoki M, Hayashi YK, Ho MF, Arahata K, Brown RH Jr (1999) Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy. Neurology 53(5):1119–1122

    Article  CAS  PubMed  Google Scholar 

  53. Argov Z, Sadeh M, Mazor K, Soffer D, Kahana E, Eisenberg I, Mitrani-Rosenbaum S, Richard I, Beckmann J, Keers S, Bashir R, Bushby K, Rosenmann H (2000) Muscular dystrophy due to dysferlin deficiency in Libyan Jews. Clinical and genetic features. Brain 123(Pt 6):1229–1237

    Article  PubMed  Google Scholar 

  54. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168–172

    Article  CAS  PubMed  Google Scholar 

  55. Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, Johnson MA, Bashir R, Britton S, Keers S, Argov Z, Mahjneh I, Fougerousse F, Beckmann JS, Bushby KM (1999) Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet 8(5):855–861

    Article  CAS  PubMed  Google Scholar 

  56. Aoki M, Liu J, Richard I, Bashir R, Britton S, Keers SM, Oeltjen J, Brown HE, Marchand S, Bourg N, Beley C, McKenna-Yasek D, Arahata K, Bohlega S, Cupler E, Illa I, Majneh I, Barohn RJ, Urtizberea JA, Fardeau M, Amato A, Angelini C, Bushby K, Beckmann JS, Brown RH Jr (2001) Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology 57(2):271–278

    Article  CAS  PubMed  Google Scholar 

  57. Sinnreich M, Therrien C, Karpati G (2006) Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology 66(7):1114–1116. doi:10.1212/01.wnl.0000204358.89303.81

    Article  PubMed  Google Scholar 

  58. Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P, Behin A, Butler-Browne G, Mouly V, Krahn M, Garcia L, Levy N (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31(2):136–142. doi:10.1002/humu.21160

    Article  CAS  PubMed  Google Scholar 

  59. Krahn MWN, Nguyen K, Vial C, Courrier S, Lostal W, Bartoli M, Labelle V, Leturcq F, Cau P, Richard I, Levy N (2007) Functional evaluation of a putative mini-dysferlin identified in a patient with moderate Miyoshi myopathy phenotype. Neuromuscul Disord 17(9):790–790. doi:10.1016/j.nmd.2007.06.102

    Article  Google Scholar 

  60. Aartsma-Rus A, Singh KH, Fokkema IF, Ginjaar IB, van Ommen GJ, den Dunnen JT, van der Maarel SM (2010) Therapeutic exon skipping for dysferlinopathies? Eur J Hum Genet 18(8):889–894. doi:10.1038/ejhg.2010.4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Harper P (2001) Myotonic dystrophy, 3rd edition: major problems in neurology series, No 37. W B Saunders, London

    Google Scholar 

  62. Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355(6360):545–546. doi:10.1038/355545a0

    Article  CAS  PubMed  Google Scholar 

  63. Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, Tosch V, Vignaud A, Ferry A, Messaddeq N, Kokunai Y, Tsuburaya R, de la Grange P, Dembele D, Francois V, Precigout G, Boulade-Ladame C, Hummel MC, Lopez de Munain A, Sergeant N, Laquerriere A, Thibault C, Deryckere F, Auboeuf D, Garcia L, Zimmermann P, Udd B, Schoser B, Takahashi MP, Nishino I, Bassez G, Laporte J, Furling D, Charlet-Berguerand N (2011) Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17(6):720–725. doi:10.1038/nm.2374

    Article  CAS  PubMed  Google Scholar 

  64. Koebis M, Ohsawa N, Kino Y, Sasagawa N, Nishino I, Ishiura S (2011) Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy type 1. Genes Cells 16(9):961–972. doi:10.1111/j.1365-2443.2011.01542.x

    Article  CAS  PubMed  Google Scholar 

  65. Ohsawa N, Koebis M, Suo S, Nishino I, Ishiura S (2011) Alternative splicing of PDLIM3/ALP, for alpha-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem Biophys Res Commun 409(1):64–69. doi:10.1016/j.bbrc.2011.04.106

    Article  CAS  PubMed  Google Scholar 

  66. Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280(5364):737–741

    Article  CAS  PubMed  Google Scholar 

  67. Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277. doi:10.1146/annurev.neuro.29.051605.113014

    Article  CAS  PubMed  Google Scholar 

  68. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29(1):40–47. doi:10.1038/ng704

    Article  CAS  PubMed  Google Scholar 

  69. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10(1):45–53

    Article  Google Scholar 

  70. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS (2003) A muscleblind knockout model for myotonic dystrophy. Science 302(5652):1978–1980. doi:10.1126/science.1088583

    Article  CAS  PubMed  Google Scholar 

  71. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10(1):35–44

    Article  CAS  PubMed  Google Scholar 

  72. Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ, van Kuik-Romeijn P, de Kimpe SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 106(33):13915–13920. doi:10.1073/pnas.0905780106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Nakamori M, Gourdon G, Thornton CA (2011) Stabilization of expanded (CTG)*(CAG) repeats by antisense oligonucleotides. Mol Ther 19(12):2222–2227. doi:10.1038/mt.2011.191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488(7409):111–115. doi:10.1038/nature11362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA (2007) Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 117(12):3952–3957

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299

    Article  PubMed  Google Scholar 

  77. Yokota T, Pistilli E, Duddy W, Nagaraju K (2007) Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 7(6):831–842

    Article  CAS  PubMed  Google Scholar 

  78. Aartsma-Rus A, van Ommen GJ (2009) Less is more: therapeutic exon skipping for Duchenne muscular dystrophy. Lancet Neurol 8(10):873–875. doi:10.1016/S1474-4422(09)70229-7

    Article  PubMed  Google Scholar 

  79. Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, Morgan JE, Muntoni F (2012) Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 20(2):462–467. doi:10.1038/mt.2011.248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8(10):918–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Muntoni F, Bushby K, van Ommen G (2005) 128th ENMC international workshop on ‘preclinical optimization and phase I/II clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy’ 22–24 October 2004, Naarden, The Netherlands. Neuromuscul Disord 15(6):450–457

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Alberta Faculty of Medicine and Dentistry, Parent Project Muscular Dystrophy (USA), The Friends of Garrett Cumming Research Funds, HM Toupin Neurological Science Research Funds, Muscular Dystrophy Canada, Canada Foundation for Innovation, Alberta Enterprise and Advanced Education, Jesse’s Journey, Slipchuk SMA Research Funds, the Women and Children’s Health Research Institute, and Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Lee, J.J.A., Yokota, T. (2016). Translational Research in Nucleic Acid Therapies for Muscular Dystrophies. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics