Skip to main content

Targeting the Type I TGF-β Receptor for Treating Caveolin-3-Deficient Autosomal Dominant Limb-Girdle Muscular Dystrophy Type 1C and Muscle Wasting Disorders

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

Caveolin-3, the principal scaffold protein in sarcolemmal caveolae, regulates signal transduction and vesicular trafficking. Dominant-negative mutations in the caveolin-3 gene (CAV3) cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C) and autosomal dominant rippling muscle disease (AD-RMD). Myostatin, a member of the muscle-specific transforming growth factor (TGF)-β family, negatively regulates muscle growth and volume. We recently showed that wild-type caveolin-3 binds to and inhibits TGF-β type I receptor (TβRI), thereby suppressing intracellular TGF-β signaling. In contrast, LGMD1C-causing mutant caveolin-3 activates TβRI, resulting in muscle atrophy. Recently, small-molecule compounds suppressing activation of TβRI, also known as activin receptor-like kinase 5 (ALK5), have been developed as anticancer agents. Oral administration of a TβRI inhibitor, Ki26894, ameliorates muscle atrophy and weakness in a caveolin-3-deficient LGMD1C mouse model. The therapeutic effect of Ki26894 is associated with a reduction in TGF-β signaling and an increase in the number of muscle precursor satellite cells. This suggests that the caveolin-3/TβRI signaling pathway plays an important role in the pathogenesis of LGMD1C and that it regulates skeletal muscle size by controlling the number of muscle precursor cells. Consequently, drugs that target the TGF-β pathway may have therapeutic potential for diseases characterized by muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parton RG (2003) Caveolae-from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 4:162–167

    Article  CAS  PubMed  Google Scholar 

  2. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  3. Razani B, Schlegel A, Lisanti MP (2000) Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci 113:2103–2109

    CAS  PubMed  Google Scholar 

  4. Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411

    Article  CAS  PubMed  Google Scholar 

  5. Couet J, Li S, Okamoto T, Ikezu T et al (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  CAS  PubMed  Google Scholar 

  6. Minetti C, Sotgia F, Bruno C et al (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368

    Article  CAS  PubMed  Google Scholar 

  7. Sunada Y, Ohi H, Hase A et al (2001) Transgenic mice expressing mutant caveolin-3 show severe myopathy associated with increased nNOS activity. Hum Mol Genet 10:173–178

    Article  CAS  PubMed  Google Scholar 

  8. Kubisch C, Schoser BG, von Düring M et al (2003) Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 53:512–520

    Article  CAS  PubMed  Google Scholar 

  9. Smythe GM, Eby JC, Disatnik MH et al (2003) A caveolin-3 mutant that causes limb girdle muscular dystrophy type lC disrupts Src localization and activity and induces apoptosis in skeletal myotubes. J Cell Sci 116:4739–4749

    Article  CAS  PubMed  Google Scholar 

  10. Sotgia F, Bonuccelli G, Minetti C et al (2003) Phosphofructokinase muscle-specific isoform requires caveolin-3 expression for plasma membrane recruitment and caveolar targeting: implications for the pathogenesis of caveolin-related muscle diseases. Am J Pathol 163:2619–2634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Matsuda C, Hayashi YK, Ogawa M et al (2001) The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 10:1761–1766

    Article  CAS  PubMed  Google Scholar 

  12. Kuga A, Ohsawa Y, Okada T et al (2011) Endoplasmic reticulum stress response in P104L mutant caveolin-3 transgenic mice. Hum Mol Genet 20:2975–2983

    Article  CAS  PubMed  Google Scholar 

  13. Zimmers TA, Davies MV, Koniaris LG et al (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488

    Article  CAS  PubMed  Google Scholar 

  14. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF­beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  15. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  Google Scholar 

  16. Tsuchida K (2004) Activins, myostatin and related TGF-beta family members as novel therapeutic targets for endocrine, metabolic and immune disorders. Curr Drug Targets Immune Endocr Metabol Disord 4:157–166

    Article  CAS  PubMed  Google Scholar 

  17. Hill JJ, Davies MV, Pearson AA et al (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277:40735–40741

    Article  CAS  PubMed  Google Scholar 

  18. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wolfman NM, McPherron AC, Pappano WN et al (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci U S A 100:15842–15846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rebbapragada A, Benchabane H, Wrana JL et al (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369

    CAS  PubMed  Google Scholar 

  22. Bogdanovich S, Krag TO, Barton ER et al (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:418–421

    Article  CAS  PubMed  Google Scholar 

  23. Wagner KR, Fleckenstein JL, Amato AA et al (2008) A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63:561–571

    Article  CAS  PubMed  Google Scholar 

  24. Lach-Trifilieff E, Minetti GC, Sheppard K et al (2014) An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol 34:606–618

    Article  PubMed Central  PubMed  Google Scholar 

  25. http://clinicaltrials.gov/show/NCT0192520.

  26. Razani B, Zhang XL, Bitzer M et al (2001) Caveolin-1 regulates transforming growth factor (TGF) -beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 276:6727–6738

    Article  CAS  PubMed  Google Scholar 

  27. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signaling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  Google Scholar 

  28. Nohe A, Keating E, Underhill TM et al (2005) Dynamics and interaction of caveolin-l isoforms with BMP-receptors. J Cell Sci 118:643–650

    Article  CAS  PubMed  Google Scholar 

  29. Ohsawa Y, Hagiwara H, Nakatani M et al (2006) Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 116:2924–2934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  CAS  PubMed  Google Scholar 

  31. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  32. Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    Article  CAS  PubMed  Google Scholar 

  33. Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Rios R, Fernández-Nocelos S, Carneiro I et al (2004) Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo. Endocrinology 145:2795–2803

    Article  CAS  PubMed  Google Scholar 

  35. Kitamura T, Koshino Y, Shibata F et al (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31:1007–1014

    Article  CAS  PubMed  Google Scholar 

  36. Ohsawa Y, Okada T, Nishimatsu S et al (2012) An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy. Lab Invest 92:1100–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to all collaborators involved in developing anti-myostatin therapeutics and to T. Kenmotsu, N. Naoe, M Harada, M. Kimura, F Uemura, E Sugita, and K. Tanda (Department of Neurology, Kawasaki Medical School) for providing technical assistance. This work was supported by a research grant for Neurological and Psychiatric Disorders from the National Center of Neurology and Psychiatry (23–5, 26–8) and Welfare of Japan and from the Japan Society for the Promotion of Science (JST, AS24212769) and by research project grants from Kawasaki Medical School (23-T1, 26-T1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Ohsawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ohsawa, Y., Nishimatsu, Si., Fujino, M., Sunada, Y. (2016). Targeting the Type I TGF-β Receptor for Treating Caveolin-3-Deficient Autosomal Dominant Limb-Girdle Muscular Dystrophy Type 1C and Muscle Wasting Disorders. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics