Skip to main content

Lysophospholipid Mediators: Their Receptors and Synthetic Pathways

  • Chapter
Bioactive Lipid Mediators

Abstract

It is now widely accepted that lysophospholipids (LPLs), a product of the phospholipase A reaction, function as mediators through G protein-coupled receptors (GPCRs). Notably, recent studies of lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have revealed their essential roles in vivo. In addition, recent studies have identified several GPCRs for other lysophospholipids such as lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). In this chapter, we summarize the actions and production of these LPLs as lipid mediators including LysoPS and LPI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kihara Y, Maceyka M, Spiegel S, Chun J (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 171:3575–3594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Moolenaar WH, van Corven EJ (1990) Growth factor-like action of lysophosphatidic acid: mitogenic signalling mediated by G proteins. Ciba Found Symp 150:99–106, discussion 106–111

    CAS  PubMed  Google Scholar 

  3. Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135:1071–1083

    Article  CAS  PubMed  Google Scholar 

  4. Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606

    Article  CAS  PubMed  Google Scholar 

  5. Estivill-Torrus G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, Del Arco I, Fernandez-Llebrez P, Chun J, De Fonseca FR (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18:938–950

    Article  PubMed  Google Scholar 

  6. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10:712–718

    Article  CAS  PubMed  Google Scholar 

  7. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, Polosukhin V, Wain J, Karimi-Shah BA, Kim ND et al (2008) The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14:45–54

    Article  CAS  PubMed  Google Scholar 

  8. Castelino FV, Seiders J, Bain G, Brooks SF, King CD, Swaney JS, Lorrain DS, Chun J, Luster AD, Tager AM (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum 63:1405–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, Briand-Mesange F, Laurencin D, Rue J, Beton N, Malet N, Mus M, Tokumura A et al (2011) Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone 49:395–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. An S, Bleu T, Hallmark OG, Goetzl EJ (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem 273:7906–7910

    Article  CAS  PubMed  Google Scholar 

  11. Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J (2002) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22:6921–6929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lin S, Wang D, Iyer S, Ghaleb AM, Shim H, Yang VW, Chun J, Yun CC (2009) The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 136:1711–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Emo J, Meednu N, Chapman TJ, Rezaee F, Balys M, Randall T, Rangasamy T, Georas SN (2012) Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation. J Immunol 188:3784–3790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 274:27776–27785

    Article  CAS  PubMed  Google Scholar 

  15. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ziecik AJ, Waclawik A, Bogacki M (2008) Conceptus signals for establishment and maintenance of pregnancy in pigs: lipid signaling system. Exp Clin Endocrinol Diabetes 116:443–449

    Article  CAS  PubMed  Google Scholar 

  17. Liszewska E, Reinaud P, Dubois O, Charpigny G (2012) Lysophosphatidic acid receptors in ovine uterus during estrous cycle and early pregnancy and their regulation by progesterone. Domest Anim Endocrinol 42:31–42

    Article  CAS  PubMed  Google Scholar 

  18. Achache H, Tsafrir A, Prus D, Reich R, Revel A (2010) Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertil Steril 94:1271–1278

    Article  CAS  PubMed  Google Scholar 

  19. Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F, Sato S, Tamaki K, Morishita Y, Kano MR et al (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116:5060–5070

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281:25822–25830

    Article  CAS  PubMed  Google Scholar 

  21. Yukiura H, Hama K, Nakanaga K, Tanaka M, Asaoka Y, Okudaira S, Arima N, Inoue A, Hashimoto T, Arai H et al (2011) Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J Biol Chem 286:43972–43983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    Article  CAS  PubMed  Google Scholar 

  23. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 318:619–628

    Article  CAS  PubMed  Google Scholar 

  24. Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y (2009) Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem 284:17304–17319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Choi S, Lee M, Shiu AL, Yo SJ, Aponte GW (2007) Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes. Am J Physiol Gastrointest Liver Physiol 292:G98–G112

    Article  CAS  PubMed  Google Scholar 

  26. Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O’Dell DK et al (2008) Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem 283:21054–21064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lin ME, Rivera RR, Chun J (2012) Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J Biol Chem 287:17608–17617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kazantseva A, Goltsov A, Zinchenko R, Grigorenko AP, Abrukova AV, Moliaka YK, Kirillov AG, Guo Z, Lyle S, Ginter EK et al (2006) Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 314:982–985

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura Y, Wajid M, Ishii Y, Shapiro L, Petukhova L, Gordon D, Christiano AM (2008) Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet 40:335–339

    Article  CAS  PubMed  Google Scholar 

  30. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA(6). J Biol Chem 284:17731–17741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J (2011) LPA-producing enzyme PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO J 30:4248–4260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ren Y, Guo L, Tang X, Apparsundaram S, Kitson C, Deguzman J, Fuentes ME, Coyle L, Majmudar R, Allard J et al (2013) Comparing the differential effects of LPA on the barrier function of human pulmonary endothelial cells. Microvasc Res 85:59–67

    Article  CAS  PubMed  Google Scholar 

  33. Sugo T, Tachimoto H, Chikatsu T, Murakami Y, Kikukawa Y, Sato S, Kikuchi K, Nagi T, Harada M, Ogi K et al (2006) Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 341:1078–1087

    Article  CAS  PubMed  Google Scholar 

  34. Liebscher I, Muller U, Teupser D, Engemaier E, Engel KM, Ritscher L, Thor D, Sangkuhl K, Ricken A, Wurm A et al (2011) Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J Biol Chem 286:2101–2110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K et al (2012) TGFalpha shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods 9:1021–1029

    Article  CAS  PubMed  Google Scholar 

  36. Murakami M, Shiraishi A, Tabata K, Fujita N (2008) Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun 371:707–712

    Article  CAS  PubMed  Google Scholar 

  37. Sugita K, Yamamura C, Tabata K, Fujita N (2013) Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP. Biochem Biophys Res Commun 430:190–195

    Article  CAS  PubMed  Google Scholar 

  38. Frasch SC, Fernandez-Boyanapalli RF, Berry KZ, Leslie CC, Bonventre JV, Murphy RC, Henson PM, Bratton DL (2011) Signaling via macrophage G2A enhances efferocytosis of dying neutrophils by augmentation of Rac activity. J Biol Chem 286:12108–12122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Murakami N, Yokomizo T, Okuno T, Shimizu T (2004) G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem 279:42484–42491

    Article  CAS  PubMed  Google Scholar 

  40. Obinata H, Hattori T, Nakane S, Tatei K, Izumi T (2005) Identification of 9-hydroxyoc-tadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J Biol Chem 280:40676–40683

    Google Scholar 

  41. Iwashita M, Makide K, Nonomura T, Misumi Y, Otani Y, Ishida M, Taguchi R, Tsujimoto M, Aoki J, Arai H et al (2009) Synthesis and evaluation of lysophosphatidylserine analogues as inducers of mast cell degranulation. Potent activities of lysophosphatidylthreonine and its 2-deoxy derivative. J Med Chem 52:5837–5863

    Article  CAS  PubMed  Google Scholar 

  42. Chang HW, Inoue K, Bruni A, Boarato E, Toffano G (1988) Stereoselective effects of lysophosphatidylserine in rodents. Br J Pharmacol 93:647–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Metz SA (1986) Lysophosphatidylinositol, but not lysophosphatidic acid, stimulates insulin release. A possible role for phospholipase A2 but not de novo synthesis of lysophospholipid in pancreatic islet function. Biochem Biophys Res Commun 138:720–727

    Article  CAS  PubMed  Google Scholar 

  44. Pineiro R, Falasca M (2012) Lysophosphatidylinositol signalling: new wine from an old bottle. Biochim Biophys Acta 1821:694–705

    Article  CAS  PubMed  Google Scholar 

  45. Andersson DA, Nash M, Bevan S (2007) Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 27:3347–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J, Matsumoto S, Kamohara M, Hiyama H, Yoshida S et al (2005) Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326:744–751

    Article  CAS  PubMed  Google Scholar 

  47. Yamashita A, Oka S, Tanikawa T, Hayashi Y, Nemoto-Sasaki Y, Sugiura T (2013) The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. Prostaglandins Other Lipid Mediat 107:103–116

    Article  CAS  PubMed  Google Scholar 

  48. Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP, Chong E, Mander PK, Green PJ, Billinton A et al (2008) The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139:225–236

    Article  CAS  PubMed  Google Scholar 

  50. Sisay S, Pryce G, Jackson SJ, Tanner C, Ross RA, Michael GJ, Selwood DL, Giovannoni G, Baker D (2013) Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis. PLoS One 8, e76907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267:2524–2529

    CAS  PubMed  Google Scholar 

  52. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277:39436–39442

    Article  CAS  PubMed  Google Scholar 

  53. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J et al (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hausmann J, Kamtekar S, Christodoulou E, Day JE, Wu T, Fulkerson Z, Albers HM, van Meeteren LA, Houben AJ, van Zeijl L et al (2011) Structural basis of substrate discrimination and integrin binding by autotaxin. Nat Struct Mol Biol 18:198–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nishimasu H, Okudaira S, Hama K, Mihara E, Dohmae N, Inoue A, Ishitani R, Takagi J, Aoki J, Nureki O (2011) Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 18:205–212

    Article  CAS  PubMed  Google Scholar 

  56. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJ, Saulnier-Blache JS, Mummery CL et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett 571:197–204

    Article  CAS  PubMed  Google Scholar 

  58. Masuda A, Nakamura K, Izutsu K, Igarashi K, Ohkawa R, Jona M, Higashi K, Yokota H, Okudaira S, Kishimoto T et al (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol 143:60–70

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura K, Igarashi K, Ide K, Ohkawa R, Okubo S, Yokota H, Masuda A, Oshima N, Takeuchi T, Nangaku M et al (2008) Validation of an autotaxin enzyme immunoassay in human serum samples and its application to hypoalbuminemia differentiation. Clin Chim Acta 388:51–58

    Article  CAS  PubMed  Google Scholar 

  60. Masuda A, Fujii T, Iwasawa Y, Nakamura K, Ohkawa R, Igarashi K, Okudaira S, Ikeda H, Kozuma S, Aoki J et al (2011) Serum autotaxin measurements in pregnant women: application for the differentiation of normal pregnancy and pregnancy-induced hypertension. Clin Chim Acta 412:1944–1950

    Article  CAS  PubMed  Google Scholar 

  61. Kremer AE, Martens JJWW, Kulik W, Rueff F, Kuiper EMM, van Buuren HR, van Erpecum KJ, Kondrackiene J, Prieto J, Rust C et al (2010) Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 139:1008–1018

    Article  CAS  PubMed  Google Scholar 

  62. Kanda H, Newton R, Klein R, Morita Y, Gunn MD, Rosen SD (2008) Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol 9:415–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Nakasaki T, Tanaka T, Okudaira S, Hirosawa M, Umemoto E, Otani K, Jin S, Bai Z, Hayasaka H, Fukui Y et al (2008) Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am J Pathol 173:1566–1576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhang Y, Chen YC, Krummel MF, Rosen SD (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J Immunol 189:3914–3924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Inoue M, Ma L, Aoki J, Chun J, Ueda H (2008) Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain. Mol Pain 4:6

    Article  PubMed Central  PubMed  Google Scholar 

  66. Oikonomou N, Thanasopoulou A, Tzouvelekis A, Harokopos V, Paparountas T, Nikitopoulou I, Witke W, Karameris A, Kotanidou A, Bouros D et al (2009) Gelsolin expression is necessary for the development of modelled pulmonary inflammation and fibrosis. Thorax 64:467–475

    Article  CAS  PubMed  Google Scholar 

  67. Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R (2004) Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA(1). J Biol Chem 279:17634–17639

    Article  CAS  PubMed  Google Scholar 

  68. Liu SY, Umezu-Goto M, Murph M, Lu YL, Liu WB, Zhang F, Yu SX, Stephens LC, Cui XJ, Murrow G et al (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15:539–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sonoda H, Aoki J, Hiramatsu T, Ishida M, Bandoh K, Nagai Y, Taguchi R, Inoue K, Arai H (2002) A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid. J Biol Chem 277:34254–34263

    Article  CAS  PubMed  Google Scholar 

  70. Shinkuma S, Akiyama M, Inoue A, Aoki J, Natsuga K, Nomura T, Arita K, Abe R, Ito K, Nakamura H et al (2010) Prevalent LIPH founder mutations lead to loss of P2Y5 activation ability of PA-PLA1alpha in autosomal recessive hypotrichosis. Hum Mutat 31:602–610

    CAS  PubMed  Google Scholar 

  71. Ali G, Chishti MS, Raza SI, John P, Ahmad W (2007) A mutation in the lipase H (LIPH) gene underlie autosomal recessive hypotrichosis. Hum Genet 121:319–325

    Article  CAS  PubMed  Google Scholar 

  72. Tariq M, Azhar A, Baig SM, Dahl N, Klar J (2012) A novel mutation in the lipase H gene underlies autosomal recessive hypotrichosis and woolly hair. Sci Rep 2:730

    Article  PubMed Central  PubMed  Google Scholar 

  73. Pasternack SM, von Kugelgen I, Al Aboud K, Lee YA, Ruschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A et al (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40:329–334

    Article  CAS  PubMed  Google Scholar 

  74. Sato T, Aoki J, Nagai Y, Dohmae N, Takio K, Doi T, Arai H, Inoue K (1997) Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J Biol Chem 272:2192–2198

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  PubMed  Google Scholar 

  76. Imae R, Inoue T, Kimura M, Kanamori T, Tomioka NH, Kage-Nakadai E, Mitani S, Arai H (2010) Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol. Mol Biol Cell 21:3114–3124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Higgs HN, Han MH, Johnson GE, Glomset JA (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    Article  CAS  PubMed  Google Scholar 

  78. Mariggio S, Sebastia J, Filippi BM, Iurisci C, Volonte C, Amadio S, De Falco V, Santoro M, Corda D (2006) A novel pathway of cell growth regulation mediated by a PLA2alpha-derived phosphoinositide metabolite. FASEB J 20:2567–2569

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junken Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kano, K. et al. (2015). Lysophospholipid Mediators: Their Receptors and Synthetic Pathways. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_8

Download citation

Publish with us

Policies and ethics