Skip to main content

Determination of Sphingolipids by LC-MS/MS

  • Chapter
Bioactive Lipid Mediators

Abstract

To investigate the biological functions and roles of sphingolipids, sensitive and compound-specific methods are required to measure their levels in biological samples. Liquid chromatography–mass spectrometry (LC-MS) using electrospray ionization (ESI) is suitable for the reliable simultaneous analysis of multiple compounds. In addition, the selected reaction monitoring (SRM) mode of tandem mass spectrometry (MS/MS) is effective to quantify with high sensitivity and selectivity. Therefore, LC-MS/MS came to be utilized for simultaneous analysis of the sphingolipids in vivo. Useful methods for the sphingolipids and related features are also summarized. The following protocol demonstrates information on determination of sphingolipids, especially sphingosine and sphingosine-1-phosphate, by LC-ESI-MS/MS in biological samples such as cell lysates, plasma, serum, or urine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasumov T, Huang H, Chung YM, Zhang R, McCullough AJ, Kirwan JP (2010) Quantification of ceramide species in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem 401:154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wewer V, Brands M, Dormann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J 79:398

    Article  CAS  PubMed  Google Scholar 

  3. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, Roscher A, Schmitz G (1999) Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Lipid Res 40:1539

    CAS  PubMed  Google Scholar 

  4. Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302:199

    Article  CAS  PubMed  Google Scholar 

  5. Gaskell SJ, Edmonds CG, Brooks CJ (1976) Applications of boronate derivatives in the study of ceramides by gas-liquid chromatography-mass spectrometry. J Chromatogr 126:591

    Article  CAS  PubMed  Google Scholar 

  6. Camera E, Picardo M, Presutti C, Catarcini P, Fanali S (2004) Separation and characterisation of sphingoceramides by high-performance liquid chromatography-electrospray ionisation mass spectrometry. J Sep Sci 27:971

    Article  CAS  PubMed  Google Scholar 

  7. Couch LH, Churchwell MI, Doerge DR, Tolleson WH, Howard PC (1997) Identification of ceramides in human cells using liquid chromatography with detection by atmospheric pressure chemical ionization-mass spectrometry. Rapid Commun Mass Spectrom 11:504

    Article  CAS  PubMed  Google Scholar 

  8. Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, Klein RL, Hannun YA, Bielawski J, Bielawska A (2010) Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 51:3074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2009) Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443

    Article  CAS  PubMed  Google Scholar 

  10. Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, Sullards MC, Merrill AH Jr (2009) Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50:1692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G (2010) A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 51:2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Scherer M, Bottcher A, Schmitz G, Liebisch G (2011) Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry. Biochim Biophys Acta 1811:68

    Article  CAS  PubMed  Google Scholar 

  13. Merritt MV, Sheeley DM, Reinhold VN (1991) Characterization of glycosphingolipids by supercritical fluid chromatography-mass spectrometry. Anal Biochem 193:24

    Article  CAS  PubMed  Google Scholar 

  14. Norberg P, MĂĄnsson JE, Liljenberg C (1991) Characterization of glucosylceramide from plasma membranes of plant root cells. Biochim Biophys Acta 1066:257

    Article  CAS  PubMed  Google Scholar 

  15. Legnini E, Orsini JJ, MĂĽhl A, Johnson B, Dajnoki A, Bodamer OA (2012) Analysis of acid sphingomyelinase activity in dried blood spots using tandem mass spectrometry. Ann Lab Med 32:319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Seefelder W, Schwerdt G, Freudinger R, Gekle M, Humpf HU (2002) Liquid chromatography/electrospray ionisation-mass spectrometry method for the quantification of sphingosine and sphinganine in cell cultures exposed to fumonisins. J Chromatogr B Anal Technol Biomed Life Sci 780:137

    Google Scholar 

  17. Blaas N, SchĂĽĂĽrmann C, Bartke N, Stahl B, Humpf HU (2011) Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS. J Agric Food Chem 59:6018

    Article  CAS  PubMed  Google Scholar 

  18. Fischbeck A, KrĂĽger M, Blaas N, Humpf HU (2009) Analysis of sphingomyelin in meat based on hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS). J Agric Food Chem 57:9469

    Article  CAS  PubMed  Google Scholar 

  19. Van Veldhoven PP, De Ceuster P, Rozenberg R, Mannaerts GP, de Hoffmann E (1994) On the presence of phosphorylated sphingoid bases in rat tissues. A mass-spectrometric approach. FEBS Lett 350:91

    Article  PubMed  Google Scholar 

  20. Mano N, Oda Y, Yamada K, Asakawa N, Katayama K (1997) Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal Biochem 244:291

    Article  CAS  PubMed  Google Scholar 

  21. Lieser B, Liebisch G, Drobnik W, Schmitz G (2003) Quantification of sphingosine and sphinganine from crude lipid extracts by HPLC electrospray ionization tandem mass spectrometry. J Lipid Res 44:2209

    Article  CAS  PubMed  Google Scholar 

  22. Lan T, Bi H, Liu W, Xie X, Xu S, Huang H (2011) Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879:520

    Article  CAS  Google Scholar 

  23. Murph M, Tanaka T, Pang J, Felix E, Liu S, Trost R, Godwin AK, Newman R, Mills G (2007) Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. Methods Enzymol 433:1

    Google Scholar 

  24. Schmidt H, Schmidt R, Geisslinger G (2006) LC-MS/MS-analysis of sphingosine-1-phosphate and related compounds in plasma samples. Prostaglandins Other Lipid Mediat 81:162

    Article  CAS  PubMed  Google Scholar 

  25. Berdyshev EV, Gorshkova IA, Garcia JG, Natarajan V, Hubbard WC (2005) Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal Biochem 339:129

    Article  CAS  PubMed  Google Scholar 

  26. Berdyshev EV, Gorshkova IA, Usatyuk P, Zhao Y, Saatian B, Hubbard W, Natarajan V (2006) De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cell Signal 18:1779

    Article  CAS  PubMed  Google Scholar 

  27. Jiang X, Han X (2006) Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: a shotgun lipidomics approach. J Lipid Res 47:1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cutignano A, Chiuminatto U, Petruzziello F, Vella FM, Fontana A (2010) UPLC–MS/MS method for analysis of sphingosine 1-phosphate in biological samples. Prostaglandins Other Lipid Mediat 93:25

    Article  CAS  PubMed  Google Scholar 

  29. Sun D, Froman BE, Orth RG, MacIsaac SA, Larosa T, Dong F, Valentin HE (2009) Identification of plant sphingolipid desaturases using chromatography and mass spectrometry. J Chromatogr Sci 47:895

    Article  CAS  PubMed  Google Scholar 

  30. Jin YX, Cui XH, Paek KY, Yim YH (2012) A strategy for enrichment of the bioactive sphingoid base-1-phosphates produced by Hypericum perforatum L. in a balloon type airlift reactor. Bioresour Technol 123:284

    Article  CAS  PubMed  Google Scholar 

  31. Saigusa D, Shiba K, Inoue A, Hama K, Okutani M, Iida N, Saito M, Suzuki K, Kaneko T, Suzuki N, Yamaguchi H, Mano N, Goto J, Hishinuma T, Aoki J, Tomioka Y (2012) Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 403:1897

    Article  CAS  PubMed  Google Scholar 

  32. Zhao YY, Liu J, Cheng XL, Bai X, Lin RC (2012) Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta 413:642

    Article  CAS  PubMed  Google Scholar 

  33. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lydic TA, Busik JV, Reid GE (2014) A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res 55:1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Tomioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takahashi, T. et al. (2015). Determination of Sphingolipids by LC-MS/MS. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_26

Download citation

Publish with us

Policies and ethics